applying code guidelines for identation

pull/26/head
midilab 1 year ago
parent 5519fd1e4f
commit 81d1b01fc7
  1. 88
      src/platforms/avr.h
  2. 2
      src/platforms/esp32.h
  3. 2
      src/platforms/samd.h
  4. 2
      src/platforms/teensy.h
  5. 466
      src/uClock.cpp
  6. 200
      src/uClock.h

@ -8,55 +8,55 @@
void initTimer(uint32_t init_clock)
{
ATOMIC(
// 16bits Timer1 init
// begin at 120bpm (48.0007680122882 Hz)
TCCR1A = 0; // set entire TCCR1A register to 0
TCCR1B = 0; // same for TCCR1B
TCNT1 = 0; // initialize counter value to 0
// set compare match register for 48.0007680122882 Hz increments
OCR1A = 41665; // = 16000000 / (8 * 48.0007680122882) - 1 (must be <65536)
// turn on CTC mode
TCCR1B |= (1 << WGM12);
// Set CS12, CS11 and CS10 bits for 8 prescaler
TCCR1B |= (0 << CS12) | (1 << CS11) | (0 << CS10);
// enable timer compare interrupt
TIMSK1 |= (1 << OCIE1A);
)
ATOMIC(
// 16bits Timer1 init
// begin at 120bpm (48.0007680122882 Hz)
TCCR1A = 0; // set entire TCCR1A register to 0
TCCR1B = 0; // same for TCCR1B
TCNT1 = 0; // initialize counter value to 0
// set compare match register for 48.0007680122882 Hz increments
OCR1A = 41665; // = 16000000 / (8 * 48.0007680122882) - 1 (must be <65536)
// turn on CTC mode
TCCR1B |= (1 << WGM12);
// Set CS12, CS11 and CS10 bits for 8 prescaler
TCCR1B |= (0 << CS12) | (1 << CS11) | (0 << CS10);
// enable timer compare interrupt
TIMSK1 |= (1 << OCIE1A);
)
}
void setTimer(uint32_t us_interval)
{
float tick_hertz_interval = 1/((float)us_interval/1000000);
float tick_hertz_interval = 1/((float)us_interval/1000000);
uint32_t ocr;
uint8_t tccr = 0;
uint32_t ocr;
uint8_t tccr = 0;
// 16bits avr timer setup
if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 1 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 1 prescaler
tccr |= (0 << CS12) | (0 << CS11) | (1 << CS10);
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 8 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 8 prescaler
tccr |= (0 << CS12) | (1 << CS11) | (0 << CS10);
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 64 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 64 prescaler
tccr |= (0 << CS12) | (1 << CS11) | (1 << CS10);
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 256 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 256 prescaler
tccr |= (1 << CS12) | (0 << CS11) | (0 << CS10);
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 1024 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 1024 prescaler
tccr |= (1 << CS12) | (0 << CS11) | (1 << CS10);
} else {
// tempo not achiavable
return;
}
// 16bits avr timer setup
if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 1 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 1 prescaler
tccr |= (0 << CS12) | (0 << CS11) | (1 << CS10);
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 8 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 8 prescaler
tccr |= (0 << CS12) | (1 << CS11) | (0 << CS10);
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 64 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 64 prescaler
tccr |= (0 << CS12) | (1 << CS11) | (1 << CS10);
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 256 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 256 prescaler
tccr |= (1 << CS12) | (0 << CS11) | (0 << CS10);
} else if ((ocr = AVR_CLOCK_FREQ / ( tick_hertz_interval * 1024 )) < 65535) {
// Set CS12, CS11 and CS10 bits for 1024 prescaler
tccr |= (1 << CS12) | (0 << CS11) | (1 << CS10);
} else {
// tempo not achiavable
return;
}
ATOMIC(
TCCR1B = 0;
OCR1A = ocr-1;
TCCR1B |= (1 << WGM12);
TCCR1B |= tccr;
)
ATOMIC(
TCCR1B = 0;
OCR1A = ocr-1;
TCCR1B |= (1 << WGM12);
TCCR1B |= tccr;
)
}

@ -25,5 +25,5 @@ void initTimer(uint32_t init_clock)
void setTimer(uint32_t us_interval)
{
timerAlarmWrite(_uclockTimer, us_interval, true);
timerAlarmWrite(_uclockTimer, us_interval, true);
}

@ -23,5 +23,5 @@ void initTimer(uint32_t init_clock)
void setTimer(uint32_t us_interval)
{
TimerTcc0.setPeriod(us_interval);
TimerTcc0.setPeriod(us_interval);
}

@ -21,5 +21,5 @@ void initTimer(uint32_t init_clock)
void setTimer(uint32_t us_interval)
{
_uclockTimer.update(us_interval);
_uclockTimer.update(us_interval);
}

@ -31,31 +31,31 @@
// General Arduino AVRs port
//
#if defined(ARDUINO_ARCH_AVR)
#include "platforms/avr.h"
#include "platforms/avr.h"
#endif
//
// Teensyduino ARMs port
//
#if defined(TEENSYDUINO)
#include "platforms/teensy.h"
#include "platforms/teensy.h"
#endif
//
// Seedstudio XIAO M0 port
//
#if defined(SEEED_XIAO_M0)
#include "platforms/samd.h"
#include "platforms/samd.h"
#endif
//
// ESP32 family
//
#if defined(ARDUINO_ARCH_ESP32) || defined(ESP32)
#include "platforms/esp32.h"
#include "platforms/esp32.h"
#endif
//
// STM32XX family
//
#if defined(ARDUINO_ARCH_STM32)
#include "platforms/stm32.h"
#include "platforms/stm32.h"
#endif
//
@ -66,340 +66,340 @@
// header of this file
void uclockInitTimer()
{
// begin at 120bpm (20833us)
initTimer(20833);
// begin at 120bpm (20833us)
initTimer(20833);
}
void setTimerTempo(float bpm)
{
// convert bpm float into 96 ppqn resolution microseconds interval
uint32_t us_interval = (60000000 / 24 / bpm);
setTimer(us_interval);
// convert bpm float into 96 ppqn resolution microseconds interval
uint32_t us_interval = (60000000 / 24 / bpm);
setTimer(us_interval);
}
namespace umodular { namespace clock {
static inline uint32_t phase_mult(uint32_t val)
{
return (val * PHASE_FACTOR) >> 8;
return (val * PHASE_FACTOR) >> 8;
}
static inline uint32_t clock_diff(uint32_t old_clock, uint32_t new_clock)
{
if (new_clock >= old_clock) {
return new_clock - old_clock;
} else {
return new_clock + (4294967295 - old_clock);
}
if (new_clock >= old_clock) {
return new_clock - old_clock;
} else {
return new_clock + (4294967295 - old_clock);
}
}
uClockClass::uClockClass()
{
tempo = 120;
start_timer = 0;
last_interval = 0;
sync_interval = 0;
state = PAUSED;
mode = INTERNAL_CLOCK;
resetCounters();
onClock96PPQNCallback = NULL;
onClock32PPQNCallback = NULL;
onClock16PPQNCallback = NULL;
onClockStartCallback = NULL;
onClockStopCallback = NULL;
tempo = 120;
start_timer = 0;
last_interval = 0;
sync_interval = 0;
state = PAUSED;
mode = INTERNAL_CLOCK;
resetCounters();
onClock96PPQNCallback = NULL;
onClock32PPQNCallback = NULL;
onClock16PPQNCallback = NULL;
onClockStartCallback = NULL;
onClockStopCallback = NULL;
}
void uClockClass::init()
{
uclockInitTimer();
// first interval calculus
setTempo(tempo);
uclockInitTimer();
// first interval calculus
setTempo(tempo);
}
void uClockClass::start()
{
resetCounters();
start_timer = millis();
if (onClockStartCallback) {
onClockStartCallback();
}
if (mode == INTERNAL_CLOCK) {
state = STARTED;
} else {
state = STARTING;
}
resetCounters();
start_timer = millis();
if (onClockStartCallback) {
onClockStartCallback();
}
if (mode == INTERNAL_CLOCK) {
state = STARTED;
} else {
state = STARTING;
}
}
void uClockClass::stop()
{
state = PAUSED;
start_timer = 0;
resetCounters();
if (onClockStopCallback) {
onClockStopCallback();
}
state = PAUSED;
start_timer = 0;
resetCounters();
if (onClockStopCallback) {
onClockStopCallback();
}
}
void uClockClass::pause()
{
if (mode == INTERNAL_CLOCK) {
if (state == PAUSED) {
start();
} else {
stop();
}
}
if (mode == INTERNAL_CLOCK) {
if (state == PAUSED) {
start();
} else {
stop();
}
}
}
void uClockClass::setTempo(float bpm)
{
if (mode == EXTERNAL_CLOCK) {
return;
}
if (mode == EXTERNAL_CLOCK) {
return;
}
if (bpm < MIN_BPM || bpm > MAX_BPM) {
return;
}
if (bpm < MIN_BPM || bpm > MAX_BPM) {
return;
}
ATOMIC(
tempo = bpm
)
ATOMIC(
tempo = bpm
)
setTimerTempo(bpm);
setTimerTempo(bpm);
}
float inline uClockClass::freqToBpm(uint32_t freq)
{
float usecs = 1/((float)freq/1000000.0);
return (float)((float)(usecs/24.0) * 60.0);
float usecs = 1/((float)freq/1000000.0);
return (float)((float)(usecs/24.0) * 60.0);
}
float uClockClass::getTempo()
{
if (mode == EXTERNAL_CLOCK) {
uint32_t acc = 0;
// wait the buffer get full
if (ext_interval_buffer[EXT_INTERVAL_BUFFER_SIZE-1] == 0) {
return tempo;
}
for (uint8_t i=0; i < EXT_INTERVAL_BUFFER_SIZE; i++) {
acc += ext_interval_buffer[i];
}
if (acc != 0) {
return freqToBpm(acc / EXT_INTERVAL_BUFFER_SIZE);
}
}
return tempo;
if (mode == EXTERNAL_CLOCK) {
uint32_t acc = 0;
// wait the buffer get full
if (ext_interval_buffer[EXT_INTERVAL_BUFFER_SIZE-1] == 0) {
return tempo;
}
for (uint8_t i=0; i < EXT_INTERVAL_BUFFER_SIZE; i++) {
acc += ext_interval_buffer[i];
}
if (acc != 0) {
return freqToBpm(acc / EXT_INTERVAL_BUFFER_SIZE);
}
}
return tempo;
}
void uClockClass::setMode(uint8_t tempo_mode)
{
mode = tempo_mode;
mode = tempo_mode;
}
uint8_t uClockClass::getMode()
{
return mode;
return mode;
}
void uClockClass::clockMe()
{
if (mode == EXTERNAL_CLOCK) {
ATOMIC(
handleExternalClock()
)
}
if (mode == EXTERNAL_CLOCK) {
ATOMIC(
handleExternalClock()
)
}
}
void uClockClass::resetCounters()
{
external_clock = 0;
internal_tick = 0;
external_tick = 0;
div32th_counter = 0;
div16th_counter = 0;
mod6_counter = 0;
indiv32th_counter = 0;
indiv16th_counter = 0;
inmod6_counter = 0;
ext_interval_idx = 0;
for (uint8_t i=0; i < EXT_INTERVAL_BUFFER_SIZE; i++) {
ext_interval_buffer[i] = 0;
}
external_clock = 0;
internal_tick = 0;
external_tick = 0;
div32th_counter = 0;
div16th_counter = 0;
mod6_counter = 0;
indiv32th_counter = 0;
indiv16th_counter = 0;
inmod6_counter = 0;
ext_interval_idx = 0;
for (uint8_t i=0; i < EXT_INTERVAL_BUFFER_SIZE; i++) {
ext_interval_buffer[i] = 0;
}
}
// TODO: Tap stuff
void uClockClass::tap()
{
// tap me
// tap me
}
// TODO: Shuffle stuff
void uClockClass::shuffle()
{
// shuffle me
// shuffle me
}
void uClockClass::handleExternalClock()
{
switch (state) {
case PAUSED:
break;
case STARTING:
state = STARTED;
external_clock = micros();
break;
case STARTED:
uint32_t u_timer = micros();
last_interval = clock_diff(external_clock, u_timer);
external_clock = u_timer;
if (inmod6_counter == 0) {
indiv16th_counter++;
indiv32th_counter++;
}
if (inmod6_counter == 3) {
indiv32th_counter++;
}
// slave tick me!
external_tick++;
inmod6_counter++;
if (inmod6_counter == 6) {
inmod6_counter = 0;
}
// accumulate interval incomming ticks data for getTempo() smooth reads on slave mode
if(++ext_interval_idx >= EXT_INTERVAL_BUFFER_SIZE) {
ext_interval_idx = 0;
}
ext_interval_buffer[ext_interval_idx] = last_interval;
if (external_tick == 1) {
interval = last_interval;
} else {
interval = (((uint32_t)interval * (uint32_t)PLL_X) + (uint32_t)(256 - PLL_X) * (uint32_t)last_interval) >> 8;
}
break;
}
switch (state) {
case PAUSED:
break;
case STARTING:
state = STARTED;
external_clock = micros();
break;
case STARTED:
uint32_t u_timer = micros();
last_interval = clock_diff(external_clock, u_timer);
external_clock = u_timer;
if (inmod6_counter == 0) {
indiv16th_counter++;
indiv32th_counter++;
}
if (inmod6_counter == 3) {
indiv32th_counter++;
}
// slave tick me!
external_tick++;
inmod6_counter++;
if (inmod6_counter == 6) {
inmod6_counter = 0;
}
// accumulate interval incomming ticks data for getTempo() smooth reads on slave mode
if(++ext_interval_idx >= EXT_INTERVAL_BUFFER_SIZE) {
ext_interval_idx = 0;
}
ext_interval_buffer[ext_interval_idx] = last_interval;
if (external_tick == 1) {
interval = last_interval;
} else {
interval = (((uint32_t)interval * (uint32_t)PLL_X) + (uint32_t)(256 - PLL_X) * (uint32_t)last_interval) >> 8;
}
break;
}
}
void uClockClass::handleTimerInt()
{
if (mode == EXTERNAL_CLOCK) {
// sync tick position with external tick clock
if ((internal_tick < external_tick) || (internal_tick > (external_tick + 1))) {
internal_tick = external_tick;
div32th_counter = indiv32th_counter;
div16th_counter = indiv16th_counter;
mod6_counter = inmod6_counter;
}
uint32_t counter = interval;
uint32_t u_timer = micros();
sync_interval = clock_diff(external_clock, u_timer);
if (internal_tick <= external_tick) {
counter -= phase_mult(sync_interval);
} else {
if (counter > sync_interval) {
counter += phase_mult(counter - sync_interval);
}
}
// update internal clock timer frequency
float bpm = freqToBpm(counter);
if (bpm != tempo) {
if (bpm >= MIN_BPM && bpm <= MAX_BPM) {
tempo = bpm;
setTimerTempo(bpm);
}
}
}
if (onClock96PPQNCallback) {
onClock96PPQNCallback(internal_tick);
}
if (mod6_counter == 0) {
if (onClock32PPQNCallback) {
onClock32PPQNCallback(div32th_counter);
}
if (onClock16PPQNCallback) {
onClock16PPQNCallback(div16th_counter);
}
div16th_counter++;
div32th_counter++;
}
if (mod6_counter == 3) {
if (onClock32PPQNCallback) {
onClock32PPQNCallback(div32th_counter);
}
div32th_counter++;
}
// tick me!
internal_tick++;
mod6_counter++;
if (mod6_counter == 6) {
mod6_counter = 0;
}
if (mode == EXTERNAL_CLOCK) {
// sync tick position with external tick clock
if ((internal_tick < external_tick) || (internal_tick > (external_tick + 1))) {
internal_tick = external_tick;
div32th_counter = indiv32th_counter;
div16th_counter = indiv16th_counter;
mod6_counter = inmod6_counter;
}
uint32_t counter = interval;
uint32_t u_timer = micros();
sync_interval = clock_diff(external_clock, u_timer);
if (internal_tick <= external_tick) {
counter -= phase_mult(sync_interval);
} else {
if (counter > sync_interval) {
counter += phase_mult(counter - sync_interval);
}
}
// update internal clock timer frequency
float bpm = freqToBpm(counter);
if (bpm != tempo) {
if (bpm >= MIN_BPM && bpm <= MAX_BPM) {
tempo = bpm;
setTimerTempo(bpm);
}
}
}
if (onClock96PPQNCallback) {
onClock96PPQNCallback(internal_tick);
}
if (mod6_counter == 0) {
if (onClock32PPQNCallback) {
onClock32PPQNCallback(div32th_counter);
}
if (onClock16PPQNCallback) {
onClock16PPQNCallback(div16th_counter);
}
div16th_counter++;
div32th_counter++;
}
if (mod6_counter == 3) {
if (onClock32PPQNCallback) {
onClock32PPQNCallback(div32th_counter);
}
div32th_counter++;
}
// tick me!
internal_tick++;
mod6_counter++;
if (mod6_counter == 6) {
mod6_counter = 0;
}
}
// elapsed time support
uint8_t uClockClass::getNumberOfSeconds(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return ((_timer - time) / 1000) % SECS_PER_MIN;
if ( time == 0 ) {
return time;
}
return ((_timer - time) / 1000) % SECS_PER_MIN;
}
uint8_t uClockClass::getNumberOfMinutes(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return (((_timer - time) / 1000) / SECS_PER_MIN) % SECS_PER_MIN;
if ( time == 0 ) {
return time;
}
return (((_timer - time) / 1000) / SECS_PER_MIN) % SECS_PER_MIN;
}
uint8_t uClockClass::getNumberOfHours(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return (((_timer - time) / 1000) % SECS_PER_DAY) / SECS_PER_HOUR;
if ( time == 0 ) {
return time;
}
return (((_timer - time) / 1000) % SECS_PER_DAY) / SECS_PER_HOUR;
}
uint8_t uClockClass::getNumberOfDays(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return ((_timer - time) / 1000) / SECS_PER_DAY;
if ( time == 0 ) {
return time;
}
return ((_timer - time) / 1000) / SECS_PER_DAY;
}
uint32_t uClockClass::getNowTimer()
{
return _timer;
return _timer;
}
uint32_t uClockClass::getPlayTime()
{
return start_timer;
return start_timer;
}
} } // end namespace umodular::clock
@ -420,10 +420,10 @@ void ARDUINO_ISR_ATTR uclockISR()
void uclockISR()
#endif
{
// global timer counter
_timer = millis();
// global timer counter
_timer = millis();
if (uClock.state == uClock.STARTED) {
uClock.handleTimerInt();
}
if (uClock.state == uClock.STARTED) {
uClock.handleTimerInt();
}
}

@ -52,104 +52,104 @@ namespace umodular { namespace clock {
class uClockClass {
private:
float inline freqToBpm(uint32_t freq);
void (*onClock96PPQNCallback)(uint32_t tick);
void (*onClock32PPQNCallback)(uint32_t tick);
void (*onClock16PPQNCallback)(uint32_t tick);
void (*onClockStartCallback)();
void (*onClockStopCallback)();
// internal clock control
uint32_t internal_tick;
uint32_t div32th_counter;
uint32_t div16th_counter;
uint8_t mod6_counter;
// external clock control
volatile uint32_t external_clock;
volatile uint32_t external_tick;
volatile uint32_t indiv32th_counter;
volatile uint32_t indiv16th_counter;
volatile uint8_t inmod6_counter;
volatile uint32_t interval;
uint32_t last_interval;
uint32_t sync_interval;
float tempo;
uint32_t start_timer;
uint8_t mode;
volatile uint32_t ext_interval_buffer[EXT_INTERVAL_BUFFER_SIZE];
uint16_t ext_interval_idx;
public:
enum {
INTERNAL_CLOCK = 0,
EXTERNAL_CLOCK
};
enum {
PAUSED = 0,
STARTING,
STARTED
};
uint8_t state;
uClockClass();
void setClock96PPQNOutput(void (*callback)(uint32_t tick)) {
onClock96PPQNCallback = callback;
}
void setClock32PPQNOutput(void (*callback)(uint32_t tick)) {
onClock32PPQNCallback = callback;
}
void setClock16PPQNOutput(void (*callback)(uint32_t tick)) {
onClock16PPQNCallback = callback;
}
void setOnClockStartOutput(void (*callback)()) {
onClockStartCallback = callback;
}
void setOnClockStopOutput(void (*callback)()) {
onClockStopCallback = callback;
}
void init();
void handleTimerInt();
void handleExternalClock();
void resetCounters();
// external class control
void start();
void stop();
void pause();
void setTempo(float bpm);
float getTempo();
// external timming control
void setMode(uint8_t tempo_mode);
uint8_t getMode();
void clockMe();
// todo!
void shuffle();
void tap();
// elapsed time support
uint8_t getNumberOfSeconds(uint32_t time);
uint8_t getNumberOfMinutes(uint32_t time);
uint8_t getNumberOfHours(uint32_t time);
uint8_t getNumberOfDays(uint32_t time);
uint32_t getNowTimer();
uint32_t getPlayTime();
private:
float inline freqToBpm(uint32_t freq);
void (*onClock96PPQNCallback)(uint32_t tick);
void (*onClock32PPQNCallback)(uint32_t tick);
void (*onClock16PPQNCallback)(uint32_t tick);
void (*onClockStartCallback)();
void (*onClockStopCallback)();
// internal clock control
uint32_t internal_tick;
uint32_t div32th_counter;
uint32_t div16th_counter;
uint8_t mod6_counter;
// external clock control
volatile uint32_t external_clock;
volatile uint32_t external_tick;
volatile uint32_t indiv32th_counter;
volatile uint32_t indiv16th_counter;
volatile uint8_t inmod6_counter;
volatile uint32_t interval;
uint32_t last_interval;
uint32_t sync_interval;
float tempo;
uint32_t start_timer;
uint8_t mode;
volatile uint32_t ext_interval_buffer[EXT_INTERVAL_BUFFER_SIZE];
uint16_t ext_interval_idx;
public:
enum {
INTERNAL_CLOCK = 0,
EXTERNAL_CLOCK
};
enum {
PAUSED = 0,
STARTING,
STARTED
};
uint8_t state;
uClockClass();
void setClock96PPQNOutput(void (*callback)(uint32_t tick)) {
onClock96PPQNCallback = callback;
}
void setClock32PPQNOutput(void (*callback)(uint32_t tick)) {
onClock32PPQNCallback = callback;
}
void setClock16PPQNOutput(void (*callback)(uint32_t tick)) {
onClock16PPQNCallback = callback;
}
void setOnClockStartOutput(void (*callback)()) {
onClockStartCallback = callback;
}
void setOnClockStopOutput(void (*callback)()) {
onClockStopCallback = callback;
}
void init();
void handleTimerInt();
void handleExternalClock();
void resetCounters();
// external class control
void start();
void stop();
void pause();
void setTempo(float bpm);
float getTempo();
// external timming control
void setMode(uint8_t tempo_mode);
uint8_t getMode();
void clockMe();
// todo!
void shuffle();
void tap();
// elapsed time support
uint8_t getNumberOfSeconds(uint32_t time);
uint8_t getNumberOfMinutes(uint32_t time);
uint8_t getNumberOfHours(uint32_t time);
uint8_t getNumberOfDays(uint32_t time);
uint32_t getNowTimer();
uint32_t getPlayTime();
};
} } // end namespace umodular::clock
@ -157,8 +157,8 @@ class uClockClass {
extern umodular::clock::uClockClass uClock;
extern "C" {
extern volatile uint16_t _clock;
extern volatile uint32_t _timer;
extern volatile uint16_t _clock;
extern volatile uint32_t _timer;
}
#endif /* __U_CLOCK_H__ */

Loading…
Cancel
Save