Merge branch 'rp2040-interrupts' into main

pull/33/head
doctea 10 months ago
commit 516933ac94
  1. 11
      README.md
  2. 8
      examples/RP2040ClockBlink/RP2040ClockBlink.ino
  3. 31
      examples/RP2040UsbMasterMidiClock/RP2040UsbMasterMidiClock.ino
  4. 95
      src/platforms/rp2040.h

@ -2,7 +2,7 @@
The **uClock BPM Generator library** is designed to implement precise and reliable BPM clock tick calls using the microcontroller's timer hardware interruption. It is designed to be multi-architecture, portable, and easy to use within the Opensource community universe. The **uClock BPM Generator library** is designed to implement precise and reliable BPM clock tick calls using the microcontroller's timer hardware interruption. It is designed to be multi-architecture, portable, and easy to use within the Opensource community universe.
We have chosen PlatformIO and Arduino as our official deployment platforms. The library has been supported and tested on general **AVR boards (ATmega168/328, ATmega16u4/32u4, and ATmega2560)** as well as **ARM boards (Teensy, STM32XX, and Seedstudio XIAO M0)**. We have chosen PlatformIO and Arduino as our official deployment platforms. The library has been supported and tested on general **AVR boards (ATmega168/328, ATmega16u4/32u4, and ATmega2560)** as well as **ARM boards (Teensy, STM32XX, and Seedstudio XIAO M0)**. It has experimental support for **RP2040 boards (Raspberry Pico, Seeed XIAO RP2040)** (see notes).
The absence of real-time features necessary for creating professional-level embedded devices for music and video on Opensource community-based platforms like Arduino led to the development of uClock. By leveraging the use of timer hardware interruptions, the library can schedule and manage real-time-like processing with safe shared resource access through its API. The absence of real-time features necessary for creating professional-level embedded devices for music and video on Opensource community-based platforms like Arduino led to the development of uClock. By leveraging the use of timer hardware interruptions, the library can schedule and manage real-time-like processing with safe shared resource access through its API.
@ -373,3 +373,12 @@ void loop()
//processYourPots(); //processYourPots();
} }
``` ```
## Known problems
### RP2040 support
- Uses the [earlephilhower core](https://github.com/earlephilhower/arduino-pico)
- Doing a 'soft reboot' (eg from reflashing) seems to crash on startup, but starting from cold and powering on works fine.
- Using FreeRTOS multithreading fails if the second core is used (via setup1() and loop1()) - using the 'interrupts-based' version of the RP2040 uClock support seems to solve this.
- Tick ticking may be off due to repeating_timer following from the end of previous tick, rather than following the start of the previous tick.

@ -11,6 +11,8 @@
#include <uClock.h> #include <uClock.h>
#define ATOMIC(X) { uint32_t __interrupt_mask = save_and_disable_interrupts(); X; restore_interrupts(__interrupt_mask); }
uint8_t bpm_blink_timer = 1; uint8_t bpm_blink_timer = 1;
void handle_bpm_led(uint32_t tick) void handle_bpm_led(uint32_t tick)
{ {
@ -50,14 +52,14 @@ void setup() {
// A led to count bpms // A led to count bpms
pinMode(LED_BUILTIN, OUTPUT); pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(LED_BUILTIN, HIGH); /*digitalWrite(LED_BUILTIN, HIGH);
delay(500); delay(500);
digitalWrite(LED_BUILTIN, LOW); digitalWrite(LED_BUILTIN, LOW);
delay(500); delay(500);
digitalWrite(LED_BUILTIN, HIGH); digitalWrite(LED_BUILTIN, HIGH);
delay(500); delay(500);
digitalWrite(LED_BUILTIN, LOW); digitalWrite(LED_BUILTIN, LOW);
delay(500); delay(500);*/
Serial.begin(115200); Serial.begin(115200);
@ -88,5 +90,5 @@ void loop() {
//MIDI_USB.read(); //MIDI_USB.read();
//count++; //count++;
//if (millis()%1000==0) //if (millis()%1000==0)
// Serial.println("looped!"); // ATOMIC(Serial.println("looped!"));
} }

@ -9,10 +9,17 @@
Adafruit_USBD_MIDI usb_midi; Adafruit_USBD_MIDI usb_midi;
MIDI_CREATE_INSTANCE(Adafruit_USBD_MIDI, usb_midi, MIDI_USB); MIDI_CREATE_INSTANCE(Adafruit_USBD_MIDI, usb_midi, MIDI_USB);
//MIDI_CREATE_INSTANCE(HardwareSerial, Serial1, MIDI); //MIDI_CREATE_INSTANCE(HardwareSerial, Serial1, MIDI);
#include <uClock.h> #include <uClock.h>
#define ATOMIC(X) { uint32_t __interrupt_mask = save_and_disable_interrupts(); X; restore_interrupts(__interrupt_mask); }
//#define LED_BUILTIN PIN_LED_B
//#define WAIT_FOR_SERIAL
#define ENABLE_MULTICORE
volatile uint32_t count = 0;
uint8_t bpm_blink_timer = 1; uint8_t bpm_blink_timer = 1;
void handle_bpm_led(uint32_t tick) void handle_bpm_led(uint32_t tick)
{ {
@ -34,6 +41,8 @@ void onSync24Callback(uint32_t tick) {
// Send MIDI_CLOCK to external gears // Send MIDI_CLOCK to external gears
MIDI_USB.sendRealTime(midi::Clock); MIDI_USB.sendRealTime(midi::Clock);
handle_bpm_led(tick); handle_bpm_led(tick);
Serial.printf("ticked with %u\n", tick);
} }
void onClockStart() { void onClockStart() {
@ -44,6 +53,16 @@ void onClockStop() {
MIDI_USB.sendRealTime(midi::Stop); MIDI_USB.sendRealTime(midi::Stop);
} }
#ifdef ENABLE_MULTICORE
void setup1() {
}
void loop1() {
if (count%1000==0)
ATOMIC(Serial.println("loop1()!"); Serial.flush());
}
#endif
void setup() { void setup() {
#if defined(ARDUINO_ARCH_MBED) && defined(ARDUINO_ARCH_RP2040) #if defined(ARDUINO_ARCH_MBED) && defined(ARDUINO_ARCH_RP2040)
// Manual begin() is required on core without built-in support for TinyUSB such as mbed rp2040 // Manual begin() is required on core without built-in support for TinyUSB such as mbed rp2040
@ -56,8 +75,10 @@ void setup() {
pinMode(LED_BUILTIN, OUTPUT); pinMode(LED_BUILTIN, OUTPUT);
Serial.begin(115200); Serial.begin(115200);
#ifdef WAIT_FOR_SERIAL
while (!Serial) while (!Serial)
delay(1); delay(1);
#endif
// wait until device mounted // wait until device mounted
while( !TinyUSBDevice.mounted() ) { while( !TinyUSBDevice.mounted() ) {
@ -76,13 +97,17 @@ void setup() {
uClock.setOnClockStart(onClockStart); uClock.setOnClockStart(onClockStart);
uClock.setOnClockStop(onClockStop); uClock.setOnClockStop(onClockStop);
// Set the clock BPM to 126 BPM // Set the clock BPM to 126 BPM
uClock.setTempo(126); uClock.setTempo(60);
// Starts the clock, tick-tac-tick-tac.. // Starts the clock, tick-tac-tick-tac..
Serial.println("about to uClock.start()..."); Serial.flush(); Serial.println("about to uClock.start()..."); Serial.flush();
uClock.start(); uClock.start();
Serial.println("uClock.start()ed!"); Serial.flush(); ATOMIC(Serial.println("uClock.start()ed!"); Serial.flush();)
} }
// Do it whatever to interface with Clock.stop(), Clock.start(), Clock.setTempo() and integrate your environment... // Do it whatever to interface with Clock.stop(), Clock.start(), Clock.setTempo() and integrate your environment...
void loop() { void loop() {
MIDI_USB.read();
count++;
if (millis()%1000==0)
ATOMIC(Serial.println("loop()!"); Serial.flush(););
} }

@ -1,46 +1,83 @@
#include <Arduino.h> #include <Arduino.h>
#include "FreeRTOS.h"
#include <task.h>
#include <semphr.h>
#include "pico/sync.h" #include "pico/sync.h"
// RPi-specific timer #define MULTICORE
struct repeating_timer timer;
// FreeRTOS main clock task size in bytes #ifdef MULTICORE
#define CLOCK_STACK_SIZE 5*1024 // adjust for your needs, a sequencer with heavy serial handling should be large in size // use interrupt version -- works for 2 cores ie can run loop1() and loop() simultaneously as well as the clock callback?
TaskHandle_t taskHandle;
// mutex to protect the shared resource
SemaphoreHandle_t _mutex;
// mutex control for task
#define ATOMIC(X) xSemaphoreTake(_mutex, portMAX_DELAY); X; xSemaphoreGive(_mutex);
// forward declaration of uClockHandler // RPi-specific timer
void uClockHandler(); struct repeating_timer timer;
// ISR handler -- called when tick happens #define ATOMIC(X) { uint32_t __interrupt_mask = save_and_disable_interrupts(); X; restore_interrupts(__interrupt_mask); }
bool handlerISR(repeating_timer *timer)
{ // forward declaration of uClockHandler
void uClockHandler();
// ISR handler -- called when tick happens
bool handlerISR(repeating_timer *timer)
{
uClockHandler();
return true;
}
void initTimer(uint32_t init_clock)
{
// set up RPi interrupt timer
// todo: actually should be -init_clock so that timer is set to start init_clock us after last tick, instead of init_clock us after finished processing last tick!
add_repeating_timer_us(init_clock, &handlerISR, NULL, &timer);
}
void setTimer(uint32_t us_interval) {
cancel_repeating_timer(&timer);
// todo: actually should be -us_interval so that timer is set to start init_clock us after last tick, instead of init_clock us after finished processing last tick!
add_repeating_timer_us(us_interval, &handlerISR, NULL, &timer);
}
#else
// use FreeRTOS scheduling/mutex version -- doesn't work (task starts but does not run) if using loop1() ie core 2
#include "FreeRTOS.h"
#include <task.h>
#include <semphr.h>
// RPi-specific timer
struct repeating_timer timer;
// FreeRTOS main clock task size in bytes
#define CLOCK_STACK_SIZE 5*1024 // adjust for your needs, a sequencer with heavy serial handling should be large in size
TaskHandle_t taskHandle;
// mutex to protect the shared resource
SemaphoreHandle_t _mutex;
// mutex control for task
#define ATOMIC(X) xSemaphoreTake(_mutex, portMAX_DELAY); X; xSemaphoreGive(_mutex);
// forward declaration of uClockHandler
void uClockHandler();
// ISR handler -- called when tick happens
bool handlerISR(repeating_timer *timer)
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE; BaseType_t xHigherPriorityTaskWoken = pdFALSE;
// Send a notification to task1 // Send a notification to task1
vTaskNotifyGiveFromISR(taskHandle, &xHigherPriorityTaskWoken); vTaskNotifyGiveFromISR(taskHandle, &xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken); portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
return true; return true;
} }
// task for user clock process // task for user clock process
void clockTask(void *pvParameters) void clockTask(void *pvParameters)
{ {
while (1) { while (1) {
// wait for a notification from ISR // wait for a notification from ISR
ulTaskNotifyTake(pdTRUE, portMAX_DELAY); ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
uClockHandler(); uClockHandler();
} }
} }
void initTimer(uint32_t init_clock) void initTimer(uint32_t init_clock)
{ {
// initialize the mutex for shared resource access // initialize the mutex for shared resource access
_mutex = xSemaphoreCreateMutex(); _mutex = xSemaphoreCreateMutex();
@ -48,10 +85,14 @@ void initTimer(uint32_t init_clock)
xTaskCreate(clockTask, "clockTask", CLOCK_STACK_SIZE, NULL, 1, &taskHandle); xTaskCreate(clockTask, "clockTask", CLOCK_STACK_SIZE, NULL, 1, &taskHandle);
// set up RPi interrupt timer // set up RPi interrupt timer
// todo: actually should be -init_clock so that timer is set to start init_clock us after last tick, instead of init_clock us after finished processing last tick!
add_repeating_timer_us(init_clock, &handlerISR, NULL, &timer); add_repeating_timer_us(init_clock, &handlerISR, NULL, &timer);
} }
void setTimer(uint32_t us_interval) { void setTimer(uint32_t us_interval) {
cancel_repeating_timer(&timer); cancel_repeating_timer(&timer);
// todo: actually should be -us_interval so that timer is set to start init_clock us after last tick, instead of init_clock us after finished processing last tick!
add_repeating_timer_us(us_interval, &handlerISR, NULL, &timer); add_repeating_timer_us(us_interval, &handlerISR, NULL, &timer);
} }
#endif
Loading…
Cancel
Save