More F32! I2S in and out and Synth Sine

pull/5/head
Chip Audette 7 years ago
parent ce0032dd78
commit d6ac1238a9
  1. 5
      OpenAudio_ArduinoLibrary.h
  2. 230
      input_i2s_f32.cpp
  3. 62
      input_i2s_f32.h
  4. 8
      keywords.txt
  5. 435
      output_i2s_f32.cpp
  6. 72
      output_i2s_f32.h
  7. 65
      synth_sine_f32.cpp
  8. 52
      synth_sine_f32.h
  9. 76
      utility/dma_chan.h
  10. 354
      utility/dspinst.h

@ -9,4 +9,7 @@
#include <AudioFilterIIR_F32.h>
#include <AudioMixer4_F32.h>
#include <AudioMultiply_F32.h>
#include <synth_waveform_F32.h>
#include "input_i2s_f32.h"
#include <synth_waveform_F32.h>
#include "synth_sine_f32.h"
#include "output_i2s_f32.h"

@ -0,0 +1,230 @@
/* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "input_i2s_f32.h"
#include "output_i2s_f32.h"
#include <arm_math.h>
DMAMEM static uint32_t i2s_rx_buffer[AUDIO_BLOCK_SAMPLES];
audio_block_t * AudioInputI2S_F32::block_left = NULL;
audio_block_t * AudioInputI2S_F32::block_right = NULL;
uint16_t AudioInputI2S_F32::block_offset = 0;
bool AudioInputI2S_F32::update_responsibility = false;
DMAChannel AudioInputI2S_F32::dma(false);
void AudioInputI2S_F32::begin(void)
{
dma.begin(true); // Allocate the DMA channel first
//block_left_1st = NULL;
//block_right_1st = NULL;
// TODO: should we set & clear the I2S_RCSR_SR bit here?
AudioOutputI2S_F32::config_i2s();
CORE_PIN13_CONFIG = PORT_PCR_MUX(4); // pin 13, PTC5, I2S0_RXD0
#if defined(KINETISK)
dma.TCD->SADDR = &I2S0_RDR0;
dma.TCD->SOFF = 0;
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
dma.TCD->NBYTES_MLNO = 2;
dma.TCD->SLAST = 0;
dma.TCD->DADDR = i2s_rx_buffer;
dma.TCD->DOFF = 2;
dma.TCD->CITER_ELINKNO = sizeof(i2s_rx_buffer) / 2;
dma.TCD->DLASTSGA = -sizeof(i2s_rx_buffer);
dma.TCD->BITER_ELINKNO = sizeof(i2s_rx_buffer) / 2;
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
#endif
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_RX);
update_responsibility = update_setup();
dma.enable();
I2S0_RCSR |= I2S_RCSR_RE | I2S_RCSR_BCE | I2S_RCSR_FRDE | I2S_RCSR_FR;
I2S0_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE; // TX clock enable, because sync'd to TX
dma.attachInterrupt(isr);
}
void AudioInputI2S_F32::isr(void)
{
uint32_t daddr, offset;
const int16_t *src, *end;
int16_t *dest_left, *dest_right;
audio_block_t *left, *right;
//digitalWriteFast(3, HIGH);
#if defined(KINETISK)
daddr = (uint32_t)(dma.TCD->DADDR);
#endif
dma.clearInterrupt();
if (daddr < (uint32_t)i2s_rx_buffer + sizeof(i2s_rx_buffer) / 2) {
// DMA is receiving to the first half of the buffer
// need to remove data from the second half
src = (int16_t *)&i2s_rx_buffer[AUDIO_BLOCK_SAMPLES/2];
end = (int16_t *)&i2s_rx_buffer[AUDIO_BLOCK_SAMPLES];
if (AudioInputI2S_F32::update_responsibility) AudioStream_F32::update_all();
} else {
// DMA is receiving to the second half of the buffer
// need to remove data from the first half
src = (int16_t *)&i2s_rx_buffer[0];
end = (int16_t *)&i2s_rx_buffer[AUDIO_BLOCK_SAMPLES/2];
}
left = AudioInputI2S_F32::block_left;
right = AudioInputI2S_F32::block_right;
if (left != NULL && right != NULL) {
offset = AudioInputI2S_F32::block_offset;
if (offset <= AUDIO_BLOCK_SAMPLES/2) {
dest_left = &(left->data[offset]);
dest_right = &(right->data[offset]);
AudioInputI2S_F32::block_offset = offset + AUDIO_BLOCK_SAMPLES/2;
do {
//n = *src++;
//*dest_left++ = (int16_t)n;
//*dest_right++ = (int16_t)(n >> 16);
*dest_left++ = *src++;
*dest_right++ = *src++;
} while (src < end);
}
}
//digitalWriteFast(3, LOW);
}
void AudioInputI2S_F32::update(void)
{
audio_block_t *new_left=NULL, *new_right=NULL, *out_left=NULL, *out_right=NULL;
// allocate 2 new blocks, but if one fails, allocate neither
new_left = AudioStream::allocate();
if (new_left != NULL) {
new_right = AudioStream::allocate();
if (new_right == NULL) {
AudioStream::release(new_left);
new_left = NULL;
}
}
__disable_irq();
if (block_offset >= AUDIO_BLOCK_SAMPLES) {
// the DMA filled 2 blocks, so grab them and get the
// 2 new blocks to the DMA, as quickly as possible
out_left = block_left;
block_left = new_left;
out_right = block_right;
block_right = new_right;
block_offset = 0;
__enable_irq();
// then transmit the DMA's former blocks
// but, first, convert them to F32
audio_block_f32_t *out_left_f32=NULL, *out_right_f32=NULL;
out_left_f32 = AudioStream_F32::allocate_f32();
if (out_left_f32 != NULL) {
out_right_f32 = AudioStream_F32::allocate_f32();
if (out_right_f32 == NULL) {
AudioStream_F32::release(out_left_f32);
out_left_f32 = NULL;
}
}
if (out_left_f32 != NULL) {
//convert to f32
arm_q15_to_float((q15_t *)out_left->data, (float32_t *)out_left_f32->data, AUDIO_BLOCK_SAMPLES);
arm_q15_to_float((q15_t *)out_right->data, (float32_t *)out_right_f32->data, AUDIO_BLOCK_SAMPLES);
//transmit the f32 data!
AudioStream_F32::transmit(out_left_f32,0);
AudioStream_F32::transmit(out_right_f32,1);
AudioStream_F32::release(out_left_f32);
AudioStream_F32::release(out_right_f32);
}
AudioStream::release(out_left);
AudioStream::release(out_right);
//Serial.print(".");
} else if (new_left != NULL) {
// the DMA didn't fill blocks, but we allocated blocks
if (block_left == NULL) {
// the DMA doesn't have any blocks to fill, so
// give it the ones we just allocated
block_left = new_left;
block_right = new_right;
block_offset = 0;
__enable_irq();
} else {
// the DMA already has blocks, doesn't need these
__enable_irq();
AudioStream::release(new_left);
AudioStream::release(new_right);
}
} else {
// The DMA didn't fill blocks, and we could not allocate
// memory... the system is likely starving for memory!
// Sadly, there's nothing we can do.
__enable_irq();
}
}
/******************************************************************/
/*
void AudioInputI2Sslave::begin(void)
{
dma.begin(true); // Allocate the DMA channel first
//block_left_1st = NULL;
//block_right_1st = NULL;
AudioOutputI2Sslave::config_i2s();
CORE_PIN13_CONFIG = PORT_PCR_MUX(4); // pin 13, PTC5, I2S0_RXD0
#if defined(KINETISK)
dma.TCD->SADDR = &I2S0_RDR0;
dma.TCD->SOFF = 0;
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
dma.TCD->NBYTES_MLNO = 2;
dma.TCD->SLAST = 0;
dma.TCD->DADDR = i2s_rx_buffer;
dma.TCD->DOFF = 2;
dma.TCD->CITER_ELINKNO = sizeof(i2s_rx_buffer) / 2;
dma.TCD->DLASTSGA = -sizeof(i2s_rx_buffer);
dma.TCD->BITER_ELINKNO = sizeof(i2s_rx_buffer) / 2;
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
#endif
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_RX);
update_responsibility = update_setup();
dma.enable();
I2S0_RCSR |= I2S_RCSR_RE | I2S_RCSR_BCE | I2S_RCSR_FRDE | I2S_RCSR_FR;
I2S0_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE; // TX clock enable, because sync'd to TX
dma.attachInterrupt(isr);
}
*/

@ -0,0 +1,62 @@
/* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef _input_i2s_f32_h_
#define _input_i2s_f32_h_
#include "Arduino.h"
#include "AudioStream_F32.h"
#include "AudioStream.h"
#include "DMAChannel.h"
class AudioInputI2S_F32 : public AudioStream_F32
{
public:
AudioInputI2S_F32(void) : AudioStream_F32(0, NULL) { begin(); }
virtual void update(void);
void begin(void);
protected:
AudioInputI2S_F32(int dummy): AudioStream_F32(0, NULL) {} // to be used only inside AudioInputI2Sslave !!
static bool update_responsibility;
static DMAChannel dma;
static void isr(void);
private:
static audio_block_t *block_left;
static audio_block_t *block_right;
static uint16_t block_offset;
};
/*
class AudioInputI2Sslave : public AudioInputI2S
{
public:
AudioInputI2Sslave(void) : AudioInputI2S(0) { begin(); }
void begin(void);
friend void dma_ch1_isr(void);
};
*/
#endif

@ -26,10 +26,18 @@ setGain_dB KEYWORD2
AudioFilterFIR_F32 KEYWORD1
AudioEffectIIR_F32 KEYWORD1
AudioEffectCompressor_F32 KEYWORD1
AudioInputI2S_F32 KEYWORD1
AudioMemory_F32 KEYWORD1
AudioMemoryUsage_F32 KEYWORD1
AudioMemoryUsageMax_F32 KEYWORD1
AudioMemoryUsageMaxReset_F32 KEYWORD1
AudioMixer4_F32 KEYWORD1
AudioMultiply_F32 KEYWORD1
AudioOutputI2S_F32 KEYWORD1
AudioSynthWaveform_F32 KEYWORD1
AudioSynthWaveformSine_F32 KEYWORD1
frequency KEYWORD2
phase KEYWORD2
amplitude KEYWORD2

@ -0,0 +1,435 @@
/* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "output_i2s_f32.h"
#include "memcpy_audio.h"
#include <arm_math.h>
audio_block_t * AudioOutputI2S_F32::block_left_1st = NULL;
audio_block_t * AudioOutputI2S_F32::block_right_1st = NULL;
audio_block_t * AudioOutputI2S_F32::block_left_2nd = NULL;
audio_block_t * AudioOutputI2S_F32::block_right_2nd = NULL;
uint16_t AudioOutputI2S_F32::block_left_offset = 0;
uint16_t AudioOutputI2S_F32::block_right_offset = 0;
bool AudioOutputI2S_F32::update_responsibility = false;
DMAMEM static uint32_t i2s_tx_buffer[AUDIO_BLOCK_SAMPLES];
DMAChannel AudioOutputI2S_F32::dma(false);
void AudioOutputI2S_F32::begin(void)
{
dma.begin(true); // Allocate the DMA channel first
block_left_1st = NULL;
block_right_1st = NULL;
// TODO: should we set & clear the I2S_TCSR_SR bit here?
config_i2s();
CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0
#if defined(KINETISK)
dma.TCD->SADDR = i2s_tx_buffer;
dma.TCD->SOFF = 2;
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
dma.TCD->NBYTES_MLNO = 2;
dma.TCD->SLAST = -sizeof(i2s_tx_buffer);
dma.TCD->DADDR = &I2S0_TDR0;
dma.TCD->DOFF = 0;
dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
dma.TCD->DLASTSGA = 0;
dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
#endif
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX);
update_responsibility = update_setup();
dma.enable();
I2S0_TCSR = I2S_TCSR_SR;
I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE;
dma.attachInterrupt(isr);
}
void AudioOutputI2S_F32::isr(void)
{
#if defined(KINETISK)
int16_t *dest;
audio_block_t *blockL, *blockR;
uint32_t saddr, offsetL, offsetR;
saddr = (uint32_t)(dma.TCD->SADDR);
dma.clearInterrupt();
if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) {
// DMA is transmitting the first half of the buffer
// so we must fill the second half
dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2];
if (AudioOutputI2S_F32::update_responsibility) AudioStream_F32::update_all();
} else {
// DMA is transmitting the second half of the buffer
// so we must fill the first half
dest = (int16_t *)i2s_tx_buffer;
}
blockL = AudioOutputI2S_F32::block_left_1st;
blockR = AudioOutputI2S_F32::block_right_1st;
offsetL = AudioOutputI2S_F32::block_left_offset;
offsetR = AudioOutputI2S_F32::block_right_offset;
if (blockL && blockR) {
memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR);
offsetL += AUDIO_BLOCK_SAMPLES / 2;
offsetR += AUDIO_BLOCK_SAMPLES / 2;
} else if (blockL) {
memcpy_tointerleaveL(dest, blockL->data + offsetL);
offsetL += AUDIO_BLOCK_SAMPLES / 2;
} else if (blockR) {
memcpy_tointerleaveR(dest, blockR->data + offsetR);
offsetR += AUDIO_BLOCK_SAMPLES / 2;
} else {
memset(dest,0,AUDIO_BLOCK_SAMPLES * 2);
return;
}
if (offsetL < AUDIO_BLOCK_SAMPLES) {
AudioOutputI2S_F32::block_left_offset = offsetL;
} else {
AudioOutputI2S_F32::block_left_offset = 0;
AudioStream::release(blockL);
AudioOutputI2S_F32::block_left_1st = AudioOutputI2S_F32::block_left_2nd;
AudioOutputI2S_F32::block_left_2nd = NULL;
}
if (offsetR < AUDIO_BLOCK_SAMPLES) {
AudioOutputI2S_F32::block_right_offset = offsetR;
} else {
AudioOutputI2S_F32::block_right_offset = 0;
AudioStream::release(blockR);
AudioOutputI2S_F32::block_right_1st = AudioOutputI2S_F32::block_right_2nd;
AudioOutputI2S_F32::block_right_2nd = NULL;
}
#else
const int16_t *src, *end;
int16_t *dest;
audio_block_t *block;
uint32_t saddr, offset;
saddr = (uint32_t)(dma.CFG->SAR);
dma.clearInterrupt();
if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) {
// DMA is transmitting the first half of the buffer
// so we must fill the second half
dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2];
end = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES];
if (AudioOutputI2S_F32::update_responsibility) AudioStream_F32::update_all();
} else {
// DMA is transmitting the second half of the buffer
// so we must fill the first half
dest = (int16_t *)i2s_tx_buffer;
end = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2];
}
block = AudioOutputI2S_F32::block_left_1st;
if (block) {
offset = AudioOutputI2S_F32::block_left_offset;
src = &block->data[offset];
do {
*dest = *src++;
dest += 2;
} while (dest < end);
offset += AUDIO_BLOCK_SAMPLES/2;
if (offset < AUDIO_BLOCK_SAMPLES) {
AudioOutputI2S_F32::block_left_offset = offset;
} else {
AudioOutputI2S_F32::block_left_offset = 0;
AudioStream::release(block);
AudioOutputI2S_F32::block_left_1st = AudioOutputI2S_F32::block_left_2nd;
AudioOutputI2S_F32::block_left_2nd = NULL;
}
} else {
do {
*dest = 0;
dest += 2;
} while (dest < end);
}
dest -= AUDIO_BLOCK_SAMPLES - 1;
block = AudioOutputI2S_F32::block_right_1st;
if (block) {
offset = AudioOutputI2S_F32::block_right_offset;
src = &block->data[offset];
do {
*dest = *src++;
dest += 2;
} while (dest < end);
offset += AUDIO_BLOCK_SAMPLES/2;
if (offset < AUDIO_BLOCK_SAMPLES) {
AudioOutputI2S_F32::block_right_offset = offset;
} else {
AudioOutputI2S_F32::block_right_offset = 0;
AudioStream::release(block);
AudioOutputI2S_F32::block_right_1st = AudioOutputI2S_F32::block_right_2nd;
AudioOutputI2S_F32::block_right_2nd = NULL;
}
} else {
do {
*dest = 0;
dest += 2;
} while (dest < end);
}
#endif
}
void AudioOutputI2S_F32::update(void)
{
// null audio device: discard all incoming data
//if (!active) return;
//audio_block_t *block = receiveReadOnly();
//if (block) release(block);
audio_block_t *block;
audio_block_f32_t *block_f32;
block_f32 = receiveReadOnly_f32(0); // input 0 = left channel
if (block_f32) {
//convert F32 to Int16
block = AudioStream::allocate();
arm_float_to_q15((float32_t *)(block_f32->data),(q15_t *)(block->data), AUDIO_BLOCK_SAMPLES);
AudioStream_F32::release(block_f32);
//now process the data blocks
__disable_irq();
if (block_left_1st == NULL) {
block_left_1st = block;
block_left_offset = 0;
__enable_irq();
} else if (block_left_2nd == NULL) {
block_left_2nd = block;
__enable_irq();
} else {
audio_block_t *tmp = block_left_1st;
block_left_1st = block_left_2nd;
block_left_2nd = block;
block_left_offset = 0;
__enable_irq();
AudioStream::release(tmp);
}
}
block_f32 = receiveReadOnly_f32(1); // input 1 = right channel
if (block_f32) {
//convert F32 to Int16
block = AudioStream::allocate();
arm_float_to_q15((float32_t *)(block_f32->data),(q15_t *)(block->data), AUDIO_BLOCK_SAMPLES);
AudioStream_F32::release(block_f32);
__disable_irq();
if (block_right_1st == NULL) {
block_right_1st = block;
block_right_offset = 0;
__enable_irq();
} else if (block_right_2nd == NULL) {
block_right_2nd = block;
__enable_irq();
} else {
audio_block_t *tmp = block_right_1st;
block_right_1st = block_right_2nd;
block_right_2nd = block;
block_right_offset = 0;
__enable_irq();
AudioStream::release(tmp);
}
}
}
// MCLK needs to be 48e6 / 1088 * 256 = 11.29411765 MHz -> 44.117647 kHz sample rate
//
#if F_CPU == 96000000 || F_CPU == 48000000 || F_CPU == 24000000
// PLL is at 96 MHz in these modes
#define MCLK_MULT 2
#define MCLK_DIV 17
#elif F_CPU == 72000000
#define MCLK_MULT 8
#define MCLK_DIV 51
#elif F_CPU == 120000000
#define MCLK_MULT 8
#define MCLK_DIV 85
#elif F_CPU == 144000000
#define MCLK_MULT 4
#define MCLK_DIV 51
#elif F_CPU == 168000000
#define MCLK_MULT 8
#define MCLK_DIV 119
#elif F_CPU == 180000000
#define MCLK_MULT 16
#define MCLK_DIV 255
#define MCLK_SRC 0
#elif F_CPU == 192000000
#define MCLK_MULT 1
#define MCLK_DIV 17
#elif F_CPU == 216000000
#define MCLK_MULT 8
#define MCLK_DIV 153
#define MCLK_SRC 0
#elif F_CPU == 240000000
#define MCLK_MULT 4
#define MCLK_DIV 85
#elif F_CPU == 16000000
#define MCLK_MULT 12
#define MCLK_DIV 17
#else
#error "This CPU Clock Speed is not supported by the Audio library";
#endif
#ifndef MCLK_SRC
#if F_CPU >= 20000000
#define MCLK_SRC 3 // the PLL
#else
#define MCLK_SRC 0 // system clock
#endif
#endif
void AudioOutputI2S_F32::config_i2s(void)
{
SIM_SCGC6 |= SIM_SCGC6_I2S;
SIM_SCGC7 |= SIM_SCGC7_DMA;
SIM_SCGC6 |= SIM_SCGC6_DMAMUX;
// if either transmitter or receiver is enabled, do nothing
if (I2S0_TCSR & I2S_TCSR_TE) return;
if (I2S0_RCSR & I2S_RCSR_RE) return;
// enable MCLK output
I2S0_MCR = I2S_MCR_MICS(MCLK_SRC) | I2S_MCR_MOE;
while (I2S0_MCR & I2S_MCR_DUF) ;
I2S0_MDR = I2S_MDR_FRACT((MCLK_MULT-1)) | I2S_MDR_DIVIDE((MCLK_DIV-1));
// configure transmitter
I2S0_TMR = 0;
I2S0_TCR1 = I2S_TCR1_TFW(1); // watermark at half fifo size
I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_BCP | I2S_TCR2_MSEL(1)
| I2S_TCR2_BCD | I2S_TCR2_DIV(3);
I2S0_TCR3 = I2S_TCR3_TCE;
I2S0_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(15) | I2S_TCR4_MF
| I2S_TCR4_FSE | I2S_TCR4_FSP | I2S_TCR4_FSD;
I2S0_TCR5 = I2S_TCR5_WNW(15) | I2S_TCR5_W0W(15) | I2S_TCR5_FBT(15);
// configure receiver (sync'd to transmitter clocks)
I2S0_RMR = 0;
I2S0_RCR1 = I2S_RCR1_RFW(1);
I2S0_RCR2 = I2S_RCR2_SYNC(1) | I2S_TCR2_BCP | I2S_RCR2_MSEL(1)
| I2S_RCR2_BCD | I2S_RCR2_DIV(3);
I2S0_RCR3 = I2S_RCR3_RCE;
I2S0_RCR4 = I2S_RCR4_FRSZ(1) | I2S_RCR4_SYWD(15) | I2S_RCR4_MF
| I2S_RCR4_FSE | I2S_RCR4_FSP | I2S_RCR4_FSD;
I2S0_RCR5 = I2S_RCR5_WNW(15) | I2S_RCR5_W0W(15) | I2S_RCR5_FBT(15);
// configure pin mux for 3 clock signals
CORE_PIN23_CONFIG = PORT_PCR_MUX(6); // pin 23, PTC2, I2S0_TX_FS (LRCLK)
CORE_PIN9_CONFIG = PORT_PCR_MUX(6); // pin 9, PTC3, I2S0_TX_BCLK
CORE_PIN11_CONFIG = PORT_PCR_MUX(6); // pin 11, PTC6, I2S0_MCLK
}
/******************************************************************/
/*
void AudioOutputI2Sslave::begin(void)
{
dma.begin(true); // Allocate the DMA channel first
//pinMode(2, OUTPUT);
block_left_1st = NULL;
block_right_1st = NULL;
AudioOutputI2Sslave::config_i2s();
CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0
#if defined(KINETISK)
dma.TCD->SADDR = i2s_tx_buffer;
dma.TCD->SOFF = 2;
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1);
dma.TCD->NBYTES_MLNO = 2;
dma.TCD->SLAST = -sizeof(i2s_tx_buffer);
dma.TCD->DADDR = &I2S0_TDR0;
dma.TCD->DOFF = 0;
dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
dma.TCD->DLASTSGA = 0;
dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
#endif
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX);
update_responsibility = update_setup();
dma.enable();
I2S0_TCSR |= I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE | I2S_TCSR_FR;
dma.attachInterrupt(isr);
}
void AudioOutputI2Sslave::config_i2s(void)
{
SIM_SCGC6 |= SIM_SCGC6_I2S;
SIM_SCGC7 |= SIM_SCGC7_DMA;
SIM_SCGC6 |= SIM_SCGC6_DMAMUX;
// if either transmitter or receiver is enabled, do nothing
if (I2S0_TCSR & I2S_TCSR_TE) return;
if (I2S0_RCSR & I2S_RCSR_RE) return;
// Select input clock 0
// Configure to input the bit-clock from pin, bypasses the MCLK divider
I2S0_MCR = I2S_MCR_MICS(0);
I2S0_MDR = 0;
// configure transmitter
I2S0_TMR = 0;
I2S0_TCR1 = I2S_TCR1_TFW(1); // watermark at half fifo size
I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_BCP;
I2S0_TCR3 = I2S_TCR3_TCE;
I2S0_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(15) | I2S_TCR4_MF
| I2S_TCR4_FSE | I2S_TCR4_FSP;
I2S0_TCR5 = I2S_TCR5_WNW(15) | I2S_TCR5_W0W(15) | I2S_TCR5_FBT(15);
// configure receiver (sync'd to transmitter clocks)
I2S0_RMR = 0;
I2S0_RCR1 = I2S_RCR1_RFW(1);
I2S0_RCR2 = I2S_RCR2_SYNC(1) | I2S_TCR2_BCP;
I2S0_RCR3 = I2S_RCR3_RCE;
I2S0_RCR4 = I2S_RCR4_FRSZ(1) | I2S_RCR4_SYWD(15) | I2S_RCR4_MF
| I2S_RCR4_FSE | I2S_RCR4_FSP | I2S_RCR4_FSD;
I2S0_RCR5 = I2S_RCR5_WNW(15) | I2S_RCR5_W0W(15) | I2S_RCR5_FBT(15);
// configure pin mux for 3 clock signals
CORE_PIN23_CONFIG = PORT_PCR_MUX(6); // pin 23, PTC2, I2S0_TX_FS (LRCLK)
CORE_PIN9_CONFIG = PORT_PCR_MUX(6); // pin 9, PTC3, I2S0_TX_BCLK
CORE_PIN11_CONFIG = PORT_PCR_MUX(6); // pin 11, PTC6, I2S0_MCLK
}
*/

@ -0,0 +1,72 @@
/* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef output_i2s_f32_h_
#define output_i2s_f32_h_
#include "Arduino.h"
#include "AudioStream_F32.h"
#include "AudioStream.h"
#include "DMAChannel.h"
class AudioOutputI2S_F32 : public AudioStream_F32
{
public:
AudioOutputI2S_F32(void) : AudioStream_F32(2, inputQueueArray) { begin(); }
virtual void update(void);
void begin(void);
friend class AudioInputI2S_F32;
protected:
AudioOutputI2S_F32(int dummy): AudioStream_F32(2, inputQueueArray) {} // to be used only inside AudioOutputI2Sslave !!
static void config_i2s(void);
static audio_block_t *block_left_1st;
static audio_block_t *block_right_1st;
static bool update_responsibility;
static DMAChannel dma;
static void isr(void);
private:
static audio_block_t *block_left_2nd;
static audio_block_t *block_right_2nd;
static uint16_t block_left_offset;
static uint16_t block_right_offset;
audio_block_f32_t *inputQueueArray[2];
};
/*
class AudioOutputI2Sslave : public AudioOutputI2S
{
public:
AudioOutputI2Sslave(void) : AudioOutputI2S(0) { begin(); } ;
void begin(void);
friend class AudioInputI2Sslave;
friend void dma_ch0_isr(void);
protected:
static void config_i2s(void);
};
*/
#endif

@ -0,0 +1,65 @@
/*
* AudioSynthWaveformSine_F32
*
* Created: Chip Audette (OpenAudio) Feb 2017
* Modeled on: AudioSynthWaveformSine from Teensy Audio Library
*
* Purpose: Create sine wave of given amplitude and frequency
*
* License: MIT License. Use at your own risk.
*
*/
#include "synth_sine_f32.h"
#include "utility/dspinst.h"
// data_waveforms.c
extern "C" {
extern const int16_t AudioWaveformSine[257];
}
void AudioSynthWaveformSine_F32::update(void)
{
audio_block_f32_t *block;
uint32_t i, ph, inc, index, scale;
int32_t val1, val2;
if (magnitude) {
block = allocate_f32();
if (block) {
ph = phase_accumulator;
inc = phase_increment;
for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) {
index = ph >> 24;
val1 = AudioWaveformSine[index];
val2 = AudioWaveformSine[index+1];
scale = (ph >> 8) & 0xFFFF;
val2 *= scale;
val1 *= 0x10000 - scale;
#if defined(KINETISK)
block->data[i] = (float) multiply_32x32_rshift32(val1 + val2, magnitude);
#elif defined(KINETISL)
block->data[i] = (float) ((((val1 + val2) >> 16) * magnitude) >> 16);
#endif
ph += inc;
block->data[i] = block->data[i] / 32768.0f; // scale to float
}
phase_accumulator = ph;
AudioStream_F32::transmit(block);
AudioStream_F32::release(block);
return;
}
}
phase_accumulator += phase_increment * AUDIO_BLOCK_SAMPLES;
}

@ -0,0 +1,52 @@
/*
* AdioSynthWaveformSine_F32
*
* Created: Chip Audette (OpenAudio) Feb 2017
* Modeled on: AudioSynthWaveformSine from Teensy Audio Library
*
* Purpose: Create sine wave of given amplitude and frequency
*
* License: MIT License. Use at your own risk.
*
*/
#ifndef synth_sine_f32_h_
#define synth_sine_f32_h_
#include "Arduino.h"
#include "AudioStream_F32.h"
#include "arm_math.h"
class AudioSynthWaveformSine_F32 : public AudioStream_F32
{
public:
AudioSynthWaveformSine_F32() : AudioStream_F32(0, NULL), magnitude(16384) {}
void frequency(float freq) {
if (freq < 0.0) freq = 0.0;
else if (freq > AUDIO_SAMPLE_RATE_EXACT/2) freq = AUDIO_SAMPLE_RATE_EXACT/2;
phase_increment = freq * (4294967296.0 / AUDIO_SAMPLE_RATE_EXACT);
}
void phase(float angle) {
if (angle < 0.0) angle = 0.0;
else if (angle > 360.0) {
angle = angle - 360.0;
if (angle >= 360.0) return;
}
phase_accumulator = angle * (4294967296.0 / 360.0);
}
void amplitude(float n) {
if (n < 0) n = 0;
else if (n > 1.0) n = 1.0;
magnitude = n * 65536.0;
}
virtual void update(void);
private:
uint32_t phase_accumulator;
uint32_t phase_increment;
int32_t magnitude;
};
#endif

@ -0,0 +1,76 @@
/* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef dma_chan_h_
#define dma_chan_h_
/*
TODO: remove this file - made obsolete by DMAChannel.h
#define DMA_ISR(ch) DMA_ISR_EXP(ch)
#define DMA_ISR_EXP(ch) dma_ch ## ch ## _isr
#define IRQ_DMA_CH(ch) IRQ_DMA_CH_EXP(ch)
#define IRQ_DMA_CH_EXP(ch) IRQ_DMA_CH ## ch
#define DMAMUX0_CHCFG(ch) DMAMUX0_CHCFG_EXP(ch)
#define DMAMUX0_CHCFG_EXP(ch) DMAMUX0_CHCFG ## ch
#define DMA_TCD_SADDR(ch) DMA_TCD_SADDR_EXP(ch)
#define DMA_TCD_SADDR_EXP(ch) DMA_TCD ## ch ## _SADDR
#define DMA_TCD_SOFF(ch) DMA_TCD_SOFF_EXP(ch)
#define DMA_TCD_SOFF_EXP(ch) DMA_TCD ## ch ## _SOFF
#define DMA_TCD_ATTR(ch) DMA_TCD_ATTR_EXP(ch)
#define DMA_TCD_ATTR_EXP(ch) DMA_TCD ## ch ## _ATTR
#define DMA_TCD_NBYTES_MLNO(ch) DMA_TCD_NBYTES_MLNO_EXP(ch)
#define DMA_TCD_NBYTES_MLNO_EXP(ch) DMA_TCD ## ch ## _NBYTES_MLNO
#define DMA_TCD_SLAST(ch) DMA_TCD_SLAST_EXP(ch)
#define DMA_TCD_SLAST_EXP(ch) DMA_TCD ## ch ## _SLAST
#define DMA_TCD_DADDR(ch) DMA_TCD_DADDR_EXP(ch)
#define DMA_TCD_DADDR_EXP(ch) DMA_TCD ## ch ## _DADDR
#define DMA_TCD_DOFF(ch) DMA_TCD_DOFF_EXP(ch)
#define DMA_TCD_DOFF_EXP(ch) DMA_TCD ## ch ## _DOFF
#define DMA_TCD_CITER_ELINKNO(ch) DMA_TCD_CITER_ELINKNO_EXP(ch)
#define DMA_TCD_CITER_ELINKNO_EXP(ch) DMA_TCD ## ch ## _CITER_ELINKNO
#define DMA_TCD_DLASTSGA(ch) DMA_TCD_DLASTSGA_EXP(ch)
#define DMA_TCD_DLASTSGA_EXP(ch) DMA_TCD ## ch ## _DLASTSGA
#define DMA_TCD_BITER_ELINKNO(ch) DMA_TCD_BITER_ELINKNO_EXP(ch)
#define DMA_TCD_BITER_ELINKNO_EXP(ch) DMA_TCD ## ch ## _BITER_ELINKNO
#define DMA_TCD_CSR(ch) DMA_TCD_CSR_EXP(ch)
#define DMA_TCD_CSR_EXP(ch) DMA_TCD ## ch ## _CSR
*/
#endif

@ -0,0 +1,354 @@
/* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef dspinst_h_
#define dspinst_h_
#include <stdint.h>
// computes limit((val >> rshift), 2**bits)
static inline int32_t signed_saturate_rshift(int32_t val, int bits, int rshift) __attribute__((always_inline, unused));
static inline int32_t signed_saturate_rshift(int32_t val, int bits, int rshift)
{
#if defined(KINETISK)
int32_t out;
asm volatile("ssat %0, %1, %2, asr %3" : "=r" (out) : "I" (bits), "r" (val), "I" (rshift));
return out;
#elif defined(KINETISL)
int32_t out, max;
out = val >> rshift;
max = 1 << (bits - 1);
if (out >= 0) {
if (out > max - 1) out = max - 1;
} else {
if (out < -max) out = -max;
}
return out;
#endif
}
// computes limit(val, 2**bits)
static inline int16_t saturate16(int32_t val) __attribute__((always_inline, unused));
static inline int16_t saturate16(int32_t val)
{
#if defined(KINETISK)
int16_t out;
int32_t tmp;
asm volatile("ssat %0, %1, %2" : "=r" (tmp) : "I" (16), "r" (val) );
out = (int16_t) (tmp & 0xffff); // not sure if the & 0xffff is necessary. test.
return out;
#elif defined(KINETISL)
return 0; // TODO....
#endif
}
// computes ((a[31:0] * b[15:0]) >> 16)
static inline int32_t signed_multiply_32x16b(int32_t a, uint32_t b) __attribute__((always_inline, unused));
static inline int32_t signed_multiply_32x16b(int32_t a, uint32_t b)
{
#if defined(KINETISK)
int32_t out;
asm volatile("smulwb %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
#elif defined(KINETISL)
return ((int64_t)a * (int16_t)(b & 0xFFFF)) >> 16;
#endif
}
// computes ((a[31:0] * b[31:16]) >> 16)
static inline int32_t signed_multiply_32x16t(int32_t a, uint32_t b) __attribute__((always_inline, unused));
static inline int32_t signed_multiply_32x16t(int32_t a, uint32_t b)
{
#if defined(KINETISK)
int32_t out;
asm volatile("smulwt %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
#elif defined(KINETISL)
return ((int64_t)a * (int16_t)(b >> 16)) >> 16;
#endif
}
// computes (((int64_t)a[31:0] * (int64_t)b[31:0]) >> 32)
static inline int32_t multiply_32x32_rshift32(int32_t a, int32_t b) __attribute__((always_inline, unused));
static inline int32_t multiply_32x32_rshift32(int32_t a, int32_t b)
{
#if defined(KINETISK)
int32_t out;
asm volatile("smmul %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
#elif defined(KINETISL)
return 0; // TODO....
#endif
}
// computes (((int64_t)a[31:0] * (int64_t)b[31:0] + 0x8000000) >> 32)
static inline int32_t multiply_32x32_rshift32_rounded(int32_t a, int32_t b) __attribute__((always_inline, unused));
static inline int32_t multiply_32x32_rshift32_rounded(int32_t a, int32_t b)
{
#if defined(KINETISK)
int32_t out;
asm volatile("smmulr %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
#elif defined(KINETISL)
return 0; // TODO....
#endif
}
// computes sum + (((int64_t)a[31:0] * (int64_t)b[31:0] + 0x8000000) >> 32)
static inline int32_t multiply_accumulate_32x32_rshift32_rounded(int32_t sum, int32_t a, int32_t b) __attribute__((always_inline, unused));
static inline int32_t multiply_accumulate_32x32_rshift32_rounded(int32_t sum, int32_t a, int32_t b)
{
#if defined(KINETISK)
int32_t out;
asm volatile("smmlar %0, %2, %3, %1" : "=r" (out) : "r" (sum), "r" (a), "r" (b));
return out;
#elif defined(KINETISL)
return 0; // TODO....
#endif
}
// computes sum - (((int64_t)a[31:0] * (int64_t)b[31:0] + 0x8000000) >> 32)
static inline int32_t multiply_subtract_32x32_rshift32_rounded(int32_t sum, int32_t a, int32_t b) __attribute__((always_inline, unused));
static inline int32_t multiply_subtract_32x32_rshift32_rounded(int32_t sum, int32_t a, int32_t b)
{
#if defined(KINETISK)
int32_t out;
asm volatile("smmlsr %0, %2, %3, %1" : "=r" (out) : "r" (sum), "r" (a), "r" (b));
return out;
#elif defined(KINETISL)
return 0; // TODO....
#endif
}
// computes (a[31:16] | (b[31:16] >> 16))
static inline uint32_t pack_16t_16t(int32_t a, int32_t b) __attribute__((always_inline, unused));
static inline uint32_t pack_16t_16t(int32_t a, int32_t b)
{
#if defined(KINETISK)
int32_t out;
asm volatile("pkhtb %0, %1, %2, asr #16" : "=r" (out) : "r" (a), "r" (b));
return out;
#elif defined(KINETISL)
return (a & 0xFFFF0000) | ((uint32_t)b >> 16);
#endif
}
// computes (a[31:16] | b[15:0])
static inline uint32_t pack_16t_16b(int32_t a, int32_t b) __attribute__((always_inline, unused));
static inline uint32_t pack_16t_16b(int32_t a, int32_t b)
{
#if defined(KINETISK)
int32_t out;
asm volatile("pkhtb %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
#elif defined(KINETISL)
return (a & 0xFFFF0000) | (b & 0x0000FFFF);
#endif
}
// computes ((a[15:0] << 16) | b[15:0])
static inline uint32_t pack_16b_16b(int32_t a, int32_t b) __attribute__((always_inline, unused));
static inline uint32_t pack_16b_16b(int32_t a, int32_t b)
{
#if defined(KINETISK)
int32_t out;
asm volatile("pkhbt %0, %1, %2, lsl #16" : "=r" (out) : "r" (b), "r" (a));
return out;
#elif defined(KINETISL)
return (a << 16) | (b & 0x0000FFFF);
#endif
}
// computes ((a[15:0] << 16) | b[15:0])
/*
static inline uint32_t pack_16x16(int32_t a, int32_t b) __attribute__((always_inline, unused));
static inline uint32_t pack_16x16(int32_t a, int32_t b)
{
int32_t out;
asm volatile("pkhbt %0, %1, %2, lsl #16" : "=r" (out) : "r" (b), "r" (a));
return out;
}
*/
// computes (((a[31:16] + b[31:16]) << 16) | (a[15:0 + b[15:0])) (saturates)
static inline uint32_t signed_add_16_and_16(uint32_t a, uint32_t b) __attribute__((always_inline, unused));
static inline uint32_t signed_add_16_and_16(uint32_t a, uint32_t b)
{
int32_t out;
asm volatile("qadd16 %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
}
// computes (((a[31:16] - b[31:16]) << 16) | (a[15:0 - b[15:0])) (saturates)
static inline int32_t signed_subtract_16_and_16(int32_t a, int32_t b) __attribute__((always_inline, unused));
static inline int32_t signed_subtract_16_and_16(int32_t a, int32_t b)
{
int32_t out;
asm volatile("qsub16 %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
}
// computes out = (((a[31:16]+b[31:16])/2) <<16) | ((a[15:0]+b[15:0])/2)
static inline int32_t signed_halving_add_16_and_16(int32_t a, int32_t b) __attribute__((always_inline, unused));
static inline int32_t signed_halving_add_16_and_16(int32_t a, int32_t b)
{
int32_t out;
asm volatile("shadd16 %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
}
// computes out = (((a[31:16]-b[31:16])/2) <<16) | ((a[15:0]-b[15:0])/2)
static inline int32_t signed_halving_subtract_16_and_16(int32_t a, int32_t b) __attribute__((always_inline, unused));
static inline int32_t signed_halving_subtract_16_and_16(int32_t a, int32_t b)
{
int32_t out;
asm volatile("shsub16 %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
}
// computes (sum + ((a[31:0] * b[15:0]) >> 16))
static inline int32_t signed_multiply_accumulate_32x16b(int32_t sum, int32_t a, uint32_t b) __attribute__((always_inline, unused));
static inline int32_t signed_multiply_accumulate_32x16b(int32_t sum, int32_t a, uint32_t b)
{
int32_t out;
asm volatile("smlawb %0, %2, %3, %1" : "=r" (out) : "r" (sum), "r" (a), "r" (b));
return out;
}
// computes (sum + ((a[31:0] * b[31:16]) >> 16))
static inline int32_t signed_multiply_accumulate_32x16t(int32_t sum, int32_t a, uint32_t b) __attribute__((always_inline, unused));
static inline int32_t signed_multiply_accumulate_32x16t(int32_t sum, int32_t a, uint32_t b)
{
int32_t out;
asm volatile("smlawt %0, %2, %3, %1" : "=r" (out) : "r" (sum), "r" (a), "r" (b));
return out;
}
// computes logical and, forces compiler to allocate register and use single cycle instruction
static inline uint32_t logical_and(uint32_t a, uint32_t b) __attribute__((always_inline, unused));
static inline uint32_t logical_and(uint32_t a, uint32_t b)
{
asm volatile("and %0, %1" : "+r" (a) : "r" (b));
return a;
}
// computes ((a[15:0] * b[15:0]) + (a[31:16] * b[31:16]))
static inline int32_t multiply_16tx16t_add_16bx16b(uint32_t a, uint32_t b) __attribute__((always_inline, unused));
static inline int32_t multiply_16tx16t_add_16bx16b(uint32_t a, uint32_t b)
{
int32_t out;
asm volatile("smuad %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
}
// computes ((a[15:0] * b[31:16]) + (a[31:16] * b[15:0]))
static inline int32_t multiply_16tx16b_add_16bx16t(uint32_t a, uint32_t b) __attribute__((always_inline, unused));
static inline int32_t multiply_16tx16b_add_16bx16t(uint32_t a, uint32_t b)
{
int32_t out;
asm volatile("smuadx %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
}
// // computes sum += ((a[15:0] * b[15:0]) + (a[31:16] * b[31:16]))
static inline int64_t multiply_accumulate_16tx16t_add_16bx16b(int64_t sum, uint32_t a, uint32_t b)
{
asm volatile("smlald %Q0, %R0, %1, %2" : "+r" (sum) : "r" (a), "r" (b));
return sum;
}
// // computes sum += ((a[15:0] * b[31:16]) + (a[31:16] * b[15:0]))
static inline int64_t multiply_accumulate_16tx16b_add_16bx16t(int64_t sum, uint32_t a, uint32_t b)
{
asm volatile("smlaldx %Q0, %R0, %1, %2" : "+r" (sum) : "r" (a), "r" (b));
return sum;
}
// computes ((a[15:0] * b[15:0])
static inline int32_t multiply_16bx16b(uint32_t a, uint32_t b) __attribute__((always_inline, unused));
static inline int32_t multiply_16bx16b(uint32_t a, uint32_t b)
{
int32_t out;
asm volatile("smulbb %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
}
// computes ((a[15:0] * b[31:16])
static inline int32_t multiply_16bx16t(uint32_t a, uint32_t b) __attribute__((always_inline, unused));
static inline int32_t multiply_16bx16t(uint32_t a, uint32_t b)
{
int32_t out;
asm volatile("smulbt %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
}
// computes ((a[31:16] * b[15:0])
static inline int32_t multiply_16tx16b(uint32_t a, uint32_t b) __attribute__((always_inline, unused));
static inline int32_t multiply_16tx16b(uint32_t a, uint32_t b)
{
int32_t out;
asm volatile("smultb %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
}
// computes ((a[31:16] * b[31:16])
static inline int32_t multiply_16tx16t(uint32_t a, uint32_t b) __attribute__((always_inline, unused));
static inline int32_t multiply_16tx16t(uint32_t a, uint32_t b)
{
int32_t out;
asm volatile("smultt %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
}
// computes (a - b), result saturated to 32 bit integer range
static inline int32_t substract_32_saturate(uint32_t a, uint32_t b) __attribute__((always_inline, unused));
static inline int32_t substract_32_saturate(uint32_t a, uint32_t b)
{
int32_t out;
asm volatile("qsub %0, %1, %2" : "=r" (out) : "r" (a), "r" (b));
return out;
}
//get Q from PSR
static inline uint32_t get_q_psr(void) __attribute__((always_inline, unused));
static inline uint32_t get_q_psr(void)
{
uint32_t out;
asm ("mrs %0, APSR" : "=r" (out));
return (out & 0x8000000)>>27;
}
//clear Q BIT in PSR
static inline void clr_q_psr(void) __attribute__((always_inline, unused));
static inline void clr_q_psr(void)
{
uint32_t t;
asm ("mov %[t],#0\n"
"msr APSR_nzcvq,%0\n" : [t] "=&r" (t)::"cc");
}
#endif
Loading…
Cancel
Save