Trying spline interpolation and simple gauss filter.

master
Holger Wirtz 6 years ago
parent 5ea21e53b7
commit 9c353f0e09
  1. 6
      config.h
  2. 43
      effect_modulated_delay.cpp
  3. 8
      effect_modulated_delay.h
  4. 0
      old/interpolation.cpp
  5. 0
      old/interpolation.h
  6. 110
      spline.cpp
  7. 42
      spline.h

@ -61,9 +61,9 @@
#define REDUCE_LOUDNESS 0 #define REDUCE_LOUDNESS 0
#define USE_XFADE_DATA 1 #define USE_XFADE_DATA 1
// CHORUS parameters // CHORUS parameters
#define INTERPOLATION_WINDOW_SIZE 13 // use only odd numbers!!! #define INTERPOLATION_WINDOW_SIZE 7 // use only odd numbers!!!
//#define INTERPOLATE QUADRATIC // LINEAR QUADRATIC COSINE CUBIC LAGRANGE #define INTERPOLATE Catmull
#define CHORUS_WAVEFORM WAVEFORM_SINE // WAVEFORM_SINE WAVEFORM_SAWTOOTH WAVEFORM_SAWTOOTH_REVERSE WAVEFORM_SQUARE WAVEFORM_TRIANGLE #define CHORUS_WAVEFORM WAVEFORM_SINE // WAVEFORM_SINE WAVEFORM_TRIANGLE WAVEFORM_SAWTOOTH WAVEFORM_SAWTOOTH_REVERSE
#define CHORUS_DELAY_LENGTH_SAMPLES (14*AUDIO_BLOCK_SAMPLES) // one AUDIO_BLOCK_SAMPLES = 2.902ms; you need doubled length, e.g. delay point is 20ms, so you need up to 40ms delay! #define CHORUS_DELAY_LENGTH_SAMPLES (14*AUDIO_BLOCK_SAMPLES) // one AUDIO_BLOCK_SAMPLES = 2.902ms; you need doubled length, e.g. delay point is 20ms, so you need up to 40ms delay!
//************************************************************************************************* //*************************************************************************************************

@ -25,7 +25,7 @@
#include <Audio.h> #include <Audio.h>
#include "limits.h" #include "limits.h"
#include "effect_modulated_delay.h" #include "effect_modulated_delay.h"
#include "interpolation.h" #include "spline.h"
#include "config.h" #include "config.h"
/******************************************************************/ /******************************************************************/
@ -57,12 +57,8 @@ boolean AudioEffectModulatedDelay::begin(short *delayline, int d_length)
_delayline = delayline; _delayline = delayline;
_delay_length = _max_delay_length = d_length; _delay_length = _max_delay_length = d_length;
_delay_length_half = _delay_length / 2;
memset(_delayline, 0, sizeof(int16_t)*_delay_length); memset(_delayline, 0, sizeof(int16_t)*_delay_length);
#ifdef INTERPOLATE
modulation_interpolate = new interpolation();
#endif
return (true); return (true);
} }
@ -86,9 +82,7 @@ void AudioEffectModulatedDelay::update(void)
int8_t j; int8_t j;
float x[INTERPOLATION_WINDOW_SIZE]; float x[INTERPOLATION_WINDOW_SIZE];
float y[INTERPOLATION_WINDOW_SIZE]; float y[INTERPOLATION_WINDOW_SIZE];
modulation_interpolate->valuelenXY(INTERPOLATION_WINDOW_SIZE); Spline s(x, y, INTERPOLATION_WINDOW_SIZE, INTERPOLATE);
modulation_interpolate->valueX(x);
modulation_interpolate->valueY(y);
#endif #endif
bp = block->data; bp = block->data;
@ -104,46 +98,30 @@ void AudioEffectModulatedDelay::update(void)
_delayline[_circ_idx] = *bp; _delayline[_circ_idx] = *bp;
// calculate modulation index // calculate modulation index
mod_idx = float(*mp) / SHRT_MAX * _delay_length_half; // calculate an index with modulation as a float(!!!) mod_idx = float(*mp) / SHRT_MAX * float(_delay_length / 2); // calculate an index with modulation as a float(!!!)
#ifdef INTERPOLATE #ifdef INTERPOLATE
// get x/y values around mod_idx // get x/y values around mod_idx
uint8_t c = 0; uint8_t c = 0;
int16_t c_mod_idx = int(mod_idx + 0.5) + _circ_idx; int16_t c_mod_idx = int(mod_idx + 0.5) + _circ_idx;
int32_t avg=0;
for (j = INTERPOLATION_WINDOW_SIZE / -2; j <= INTERPOLATION_WINDOW_SIZE / 2; j++) for (j = INTERPOLATION_WINDOW_SIZE / -2; j <= INTERPOLATION_WINDOW_SIZE / 2; j++)
{ {
int16_t jc_mod_idx = (c_mod_idx + j) % _delay_length; int16_t jc_mod_idx = (c_mod_idx + j) % _delay_length - 1;
if (jc_mod_idx < 0) if (jc_mod_idx < 0)
y[c] = float(_delayline[_delay_length + jc_mod_idx]); y[c] = float(_delayline[_delay_length - 1 + jc_mod_idx]);
else else
y[c] = float(_delayline[jc_mod_idx]); y[c] = float(_delayline[jc_mod_idx]);
x[c] = float(c); x[c] = float(c);
avg += y[c];
c++; // because 42 is the answer! ;-) c++; // because 42 is the answer! ;-)
} }
modulation_interpolate->valueI(mod_idx - int(mod_idx + 0.5)); //*bp = int(s.value(mod_idx - int(mod_idx + 0.5)) + 0.5);
*bp = avg / INTERPOLATION_WINDOW_SIZE;
#if INTERPOLATE == LINEAR
*bp = int(modulation_interpolate->LinearInterpolate() + 0.5);
#elif INTERPOLATE == QUDRATIC
*bp = int(modulation_interpolate->QuadraticInterpolate() + 0.5);
#elif INTERPOLATE == COSINE
*bp = int(modulation_interpolate->CosineInterpolate() + 0.5);
#elif INTERPOLATE == CUBIC
*bp = int(modulation_interpolate->CubicInterpolate() + 0.5);
#elif INTERPOLATE == LAGRANGE
*bp = int(modulation_interpolate->LagrangeInterpolate() + 0.5);
#else
// No interpolation - should sound really bad...
int16_t c_mod_idx = (int(mod_idx + 0.5) + _circ_idx) % _delay_length;
if (c_mod_idx < 0)
*bp = _delayline[_delay_length - 1 + c_mod_idx];
else
*bp = _delayline[c_mod_idx];
#endif
#else #else
// No interpolation - should sound really bad... // No interpolation - should sound really bad...
int16_t c_mod_idx = (int(mod_idx + 0.5) + _circ_idx) % _delay_length; int16_t c_mod_idx = (int(mod_idx + 0.5) + _circ_idx) % _delay_length - 1;
if (c_mod_idx < 0) if (c_mod_idx < 0)
*bp = _delayline[_delay_length - 1 + c_mod_idx]; *bp = _delayline[_delay_length - 1 + c_mod_idx];
else else
@ -169,5 +147,4 @@ void AudioEffectModulatedDelay::update(void)
void AudioEffectModulatedDelay::setDelay(float milliseconds) void AudioEffectModulatedDelay::setDelay(float milliseconds)
{ {
_delay_length = min(AUDIO_SAMPLE_RATE * milliseconds / 500, _max_delay_length); _delay_length = min(AUDIO_SAMPLE_RATE * milliseconds / 500, _max_delay_length);
_delay_length_half = _delay_length / 2;
} }

@ -50,17 +50,13 @@ class AudioEffectModulatedDelay :
virtual void setDelay(float milliseconds); virtual void setDelay(float milliseconds);
private: private:
void _spline_interpolation(float* x, float* a, uint8_t n);
int16_t interpolate(int16_t x1, int16_t y1, int16_t x2, int16_t y2);
audio_block_t *inputQueueArray[2]; audio_block_t *inputQueueArray[2];
#ifdef INTERPOLATE
class interpolation *modulation_interpolate;
#endif
int16_t *_delayline; int16_t *_delayline;
int16_t _circ_idx; int16_t _circ_idx;
uint16_t _max_delay_length; uint16_t _max_delay_length;
uint16_t _delay_length; uint16_t _delay_length;
uint16_t _delay_length_half;
}; };
#endif #endif

@ -0,0 +1,110 @@
#include "Arduino.h"
#include "spline.h"
#include <math.h>
Spline::Spline(void) {
_prev_point = 0;
}
Spline::Spline( float x[], float y[], int numPoints, int degree )
{
setPoints(x,y,numPoints);
setDegree(degree);
_prev_point = 0;
}
Spline::Spline( float x[], float y[], float m[], int numPoints )
{
setPoints(x,y,m,numPoints);
setDegree(Hermite);
_prev_point = 0;
}
void Spline::setPoints( float x[], float y[], int numPoints ) {
_x = x;
_y = y;
_length = numPoints;
}
void Spline::setPoints( float x[], float y[], float m[], int numPoints ) {
_x = x;
_y = y;
_m = m;
_length = numPoints;
}
void Spline::setDegree( int degree ){
_degree = degree;
}
float Spline::value( float x )
{
if( _x[0] > x ) {
return _y[0];
}
else if ( _x[_length-1] < x ) {
return _y[_length-1];
}
else {
for(int i = 0; i < _length; i++ )
{
int index = ( i + _prev_point ) % _length;
if( _x[index] == x ) {
_prev_point = index;
return _y[index];
} else if( (_x[index] < x) && (x < _x[index+1]) ) {
_prev_point = index;
return calc( x, index );
}
}
}
}
float Spline::calc( float x, int i )
{
switch( _degree ) {
case 0:
return _y[i];
case 1:
if( _x[i] == _x[i+1] ) {
// Avoids division by 0
return _y[i];
} else {
return _y[i] + (_y[i+1] - _y[i]) * ( x - _x[i]) / ( _x[i+1] - _x[i] );
}
case Hermite:
return hermite( ((x-_x[i]) / (_x[i+1]-_x[i])), _y[i], _y[i+1], _m[i], _m[i+1], _x[i], _x[i+1] );
case Catmull:
if( i == 0 ) {
// x prior to spline start - first point used to determine tangent
return _y[1];
} else if( i == _length-2 ) {
// x after spline end - last point used to determine tangent
return _y[_length-2];
} else {
float t = (x-_x[i]) / (_x[i+1]-_x[i]);
float m0 = (i==0 ? 0 : catmull_tangent(i) );
float m1 = (i==_length-1 ? 0 : catmull_tangent(i+1) );
return hermite( t, _y[i], _y[i+1], m0, m1, _x[i], _x[i+1]);
}
}
}
float Spline::hermite( float t, float p0, float p1, float m0, float m1, float x0, float x1 ) {
return (hermite_00(t)*p0) + (hermite_10(t)*(x1-x0)*m0) + (hermite_01(t)*p1) + (hermite_11(t)*(x1-x0)*m1);
}
float Spline::hermite_00( float t ) { return (2*pow(t,3)) - (3*pow(t,2)) + 1;}
float Spline::hermite_10( float t ) { return pow(t,3) - (2*pow(t,2)) + t; }
float Spline::hermite_01( float t ) { return (3*pow(t,2)) - (2*pow(t,3)); }
float Spline::hermite_11( float t ) { return pow(t,3) - pow(t,2); }
float Spline::catmull_tangent( int i )
{
if( _x[i+1] == _x[i-1] ) {
// Avoids division by 0
return 0;
} else {
return (_y[i+1] - _y[i-1]) / (_x[i+1] - _x[i-1]);
}
}

@ -0,0 +1,42 @@
/*
Library for 1-d splines
Copyright Ryan Michael
Licensed under the GPLv3
*/
#ifndef spline_h
#define spline_h
#include "Arduino.h"
#define Hermite 10
#define Catmull 11
class Spline
{
public:
Spline( void );
Spline( float x[], float y[], int numPoints, int degree = 1 );
Spline( float x[], float y[], float m[], int numPoints );
float value( float x );
void setPoints( float x[], float y[], int numPoints );
void setPoints( float x[], float y[], float m[], int numPoints );
void setDegree( int degree );
private:
float calc( float, int);
float* _x;
float* _y;
float* _m;
int _degree;
int _length;
int _prev_point;
float hermite( float t, float p0, float p1, float m0, float m1, float x0, float x1 );
float hermite_00( float t );
float hermite_10( float t );
float hermite_01( float t );
float hermite_11( float t );
float catmull_tangent( int i );
};
#endif
Loading…
Cancel
Save