Holger Wirtz 2 years ago
parent 42ca67a8dd
commit dfd01d467a
  1. 17
      .theia/launch.json
  2. 2
      MicroDexed.ino
  3. 3
      third-party/effect_delay_ext8/examples/AudioDelay8M/AudioDelay8M.ino
  4. 231
      third-party/effect_delay_ext8/src/effect_delay_ext8.cpp
  5. 46
      third-party/effect_delay_ext8/src/effect_delay_ext8.h

@ -0,0 +1,17 @@
{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
"version": "0.2.0",
"configurations": [
{
"cwd": "${workspaceFolder}",
"executable": "./bin/executable.elf",
"name": "Debug with ST-Util",
"request": "launch",
"type": "cortex-debug",
"runToEntryPoint": "main",
"showDevDebugOutput": "none",
"servertype": "stutil"
}
]
}

@ -242,7 +242,7 @@ FLASHMEM void create_audio_dexed_chain(uint8_t instance_id) {
chorus_mixer[instance_id] = new AudioMixer<2>(); chorus_mixer[instance_id] = new AudioMixer<2>();
delay_fb_mixer[instance_id] = new AudioMixer<2>(); delay_fb_mixer[instance_id] = new AudioMixer<2>();
#if defined(USE_DELAY_8M) #if defined(USE_DELAY_8M)
delay_fx[instance_id] = new AudioEffectDelayExternal8(AUDIO_MEMORY8_PSRAM_8MB, DELAY_MAX_TIME); delay_fx[instance_id] = new AudioEffectDelayExternal8(AUDIO_MEMORY_PSRAM64, DELAY_MAX_TIME);
#else #else
delay_fx[instance_id] = new AudioEffectDelay(); delay_fx[instance_id] = new AudioEffectDelay();
#endif #endif

@ -1,3 +1,4 @@
#include <Arduino.h>
#include <Audio.h> #include <Audio.h>
#include <Wire.h> #include <Wire.h>
#include <SPI.h> #include <SPI.h>
@ -6,7 +7,7 @@
// GUItool: begin automatically generated code // GUItool: begin automatically generated code
AudioSynthWaveformSine sine1; //xy=382,432 AudioSynthWaveformSine sine1; //xy=382,432
AudioAmplifier amp1; //xy=606,441 AudioAmplifier amp1; //xy=606,441
AudioEffectDelayExternal8 delayExt1(AUDIO_MEMORY8_PSRAM_8MB,20000); //xy=770,321 AudioEffectDelayExternal8 delayExt1(AUDIO_MEMORY_PSRAM64, 20000); //xy=770,321
AudioMixer4 mixer1; //xy=983,386 AudioMixer4 mixer1; //xy=983,386
AudioOutputI2S i2s1; //xy=1131,343 AudioOutputI2S i2s1; //xy=1131,343
AudioConnection patchCord1(sine1, amp1); AudioConnection patchCord1(sine1, amp1);

@ -24,51 +24,10 @@
* THE SOFTWARE. * THE SOFTWARE.
*/ */
/* Added AUDIO_MEMORY_PSRAM_8MB
* see https://forum.pjrc.com/threads/29276-Limits-of-delay-effect-in-audio-library/page5?highlight=APS6404L-3SQR
* wirtz@parasitstudio.de
*/
#include <Arduino.h> #include <Arduino.h>
#include "extmem.h"
#include "effect_delay_ext8.h" #include "effect_delay_ext8.h"
//#define INTERNAL_TEST
// While 20 MHz (Teensy actually uses 16 MHz in most cases) and even 24 MHz
// have worked well in testing at room temperature with 3.3V power, to fully
// meet all the worst case timing specs, the SPI clock low time would need
// to be 40ns (12.5 MHz clock) for the single chip case and 51ns (9.8 MHz
// clock) for the 6-chip memoryboard with 74LCX126 buffers.
//
// Timing analysis and info is here:
// https://forum.pjrc.com/threads/29276-Limits-of-delay-effect-in-audio-library?p=97506&viewfull=1#post97506
#define SPISETTING SPISettings(20000000, MSBFIRST, SPI_MODE0)
// Use these with the audio adaptor board (should be adjustable by the user...)
//#define SPIRAM_MOSI_PIN 7
//#define SPIRAM_MISO_PIN 12
//#define SPIRAM_SCK_PIN 14
//#define SPIRAM_CS_PIN 6
//#define SPIRAM_MOSI_PIN 11 //-----------------
//#define SPIRAM_MISO_PIN 12 // for Teensy 4.1 audio board
//#define SPIRAM_SCK_PIN 13 //
//#define SPIRAM_CS_PIN 36 //-----------------
//
#define SPIRAM_MOSI_PIN 50 //----------------- https://forum.pjrc.com/attachment.php?attachmentid=20853&d=1593888859
#define SPIRAM_MISO_PIN 54 // for Teensy 4.1
#define SPIRAM_SCK_PIN 49 //-----------------
#define SPIRAM_CS_PIN 52 // CS???
//#define SPIRAM_CS_PIN 36 // CS0-2
//#define SPIRAM_CS_PIN 37 // CS0-1
//#define SPIRAM_CS_PIN 44 // CS2
//#define SPIRAM_CS_PIN 10 // CS0
//#define SPIRAM_CS_PIN 0 // CS1
//#define SPIRAM_CS_PIN 38 // CS1-0
//
#define MEMBOARD_CS0_PIN 2
#define MEMBOARD_CS1_PIN 3
#define MEMBOARD_CS2_PIN 4
void AudioEffectDelayExternal8::update(void) void AudioEffectDelayExternal8::update(void)
{ {
@ -77,7 +36,7 @@ void AudioEffectDelayExternal8::update(void)
// grab incoming data and put it into the memory // grab incoming data and put it into the memory
block = receiveReadOnly(); block = receiveReadOnly();
if (memory_type >= AUDIO_MEMORY8_UNDEFINED) { if (memory_type >= AUDIO_MEMORY_UNDEFINED) {
// ignore input and do nothing if undefined memory type // ignore input and do nothing if undefined memory type
release(block); release(block);
return; return;
@ -134,189 +93,3 @@ void AudioEffectDelayExternal8::update(void)
} }
} }
uint32_t AudioEffectDelayExternal8::allocated[2] = {0, 0};
void AudioEffectDelayExternal8::initialize(AudioEffectDelayMemoryType8_t type, uint32_t samples)
{
uint32_t memsize, avail;
activemask = 0;
head_offset = 0;
memory_type = type;
SPI.setMOSI(SPIRAM_MOSI_PIN);
SPI.setMISO(SPIRAM_MISO_PIN);
SPI.setSCK(SPIRAM_SCK_PIN);
SPI.setCS(SPIRAM_CS_PIN); // added for Teensy 4.1
//
SPI.begin();
if (type == AUDIO_MEMORY8_23LC1024) {
#ifdef INTERNAL_TEST
memsize = 8000;
#else
memsize = 65536;
#endif
pinMode(SPIRAM_CS_PIN, OUTPUT);
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
} else if (type == AUDIO_MEMORY8_MEMORYBOARD) {
memsize = 393216;
pinMode(MEMBOARD_CS0_PIN, OUTPUT);
pinMode(MEMBOARD_CS1_PIN, OUTPUT);
pinMode(MEMBOARD_CS2_PIN, OUTPUT);
digitalWriteFast(MEMBOARD_CS0_PIN, LOW);
digitalWriteFast(MEMBOARD_CS1_PIN, LOW);
digitalWriteFast(MEMBOARD_CS2_PIN, LOW);
} else if (type == AUDIO_MEMORY8_CY15B104) {
#ifdef INTERNAL_TEST
memsize = 8000;
#else
memsize = 262144;
#endif
pinMode(SPIRAM_CS_PIN, OUTPUT);
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
} else if (type == AUDIO_MEMORY8_PSRAM_8MB) {
#ifdef INTERNAL_TEST
memsize = 8000;
#else
memsize = (2^23); // 8388608 bytes
#endif
pinMode(SPIRAM_CS_PIN, OUTPUT);
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
} else {
return;
}
avail = memsize - allocated[type];
if (avail < AUDIO_BLOCK_SAMPLES*2+1) {
memory_type = AUDIO_MEMORY8_UNDEFINED;
return;
}
if (samples > avail) samples = avail;
memory_begin = allocated[type];
allocated[type] += samples;
memory_length = samples;
zero(0, memory_length);
}
#ifdef INTERNAL_TEST
static int16_t testmem[8000]; // testing only
#endif
void AudioEffectDelayExternal8::read(uint32_t offset, uint32_t count, int16_t *data)
{
uint32_t addr = memory_begin + offset;
#ifdef INTERNAL_TEST
while (count) { *data++ = testmem[addr++]; count--; } // testing only
#else
if (memory_type == AUDIO_MEMORY8_23LC1024 ||
memory_type == AUDIO_MEMORY8_CY15B104 ||
memory_type == AUDIO_MEMORY8_PSRAM_8MB)
{
addr *= 2;
SPI.beginTransaction(SPISETTING);
digitalWriteFast(SPIRAM_CS_PIN, LOW);
SPI.transfer16((0x03 << 8) | (addr >> 16));
SPI.transfer16(addr & 0xFFFF);
while (count) {
*data++ = (int16_t)(SPI.transfer16(0));
count--;
}
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
SPI.endTransaction();
} else if (memory_type == AUDIO_MEMORY8_MEMORYBOARD) {
SPI.beginTransaction(SPISETTING);
while (count) {
uint32_t chip = (addr >> 16) + 1;
digitalWriteFast(MEMBOARD_CS0_PIN, chip & 1);
digitalWriteFast(MEMBOARD_CS1_PIN, chip & 2);
digitalWriteFast(MEMBOARD_CS2_PIN, chip & 4);
uint32_t chipaddr = (addr & 0xFFFF) << 1;
SPI.transfer16((0x03 << 8) | (chipaddr >> 16));
SPI.transfer16(chipaddr & 0xFFFF);
uint32_t num = 0x10000 - (addr & 0xFFFF);
if (num > count) num = count;
count -= num;
addr += num;
do {
*data++ = (int16_t)(SPI.transfer16(0));
} while (--num > 0);
}
digitalWriteFast(MEMBOARD_CS0_PIN, LOW);
digitalWriteFast(MEMBOARD_CS1_PIN, LOW);
digitalWriteFast(MEMBOARD_CS2_PIN, LOW);
SPI.endTransaction();
}
#endif
}
void AudioEffectDelayExternal8::write(uint32_t offset, uint32_t count, const int16_t *data)
{
uint32_t addr = memory_begin + offset;
#ifdef INTERNAL_TEST
while (count) { testmem[addr++] = *data++; count--; } // testing only
#else
if (memory_type == AUDIO_MEMORY8_23LC1024 ||
memory_type == AUDIO_MEMORY8_PSRAM_8MB ) {
addr *= 2;
SPI.beginTransaction(SPISETTING);
digitalWriteFast(SPIRAM_CS_PIN, LOW);
SPI.transfer16((0x02 << 8) | (addr >> 16));
SPI.transfer16(addr & 0xFFFF);
while (count) {
int16_t w = 0;
if (data) w = *data++;
SPI.transfer16(w);
count--;
}
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
SPI.endTransaction();
} else if (memory_type == AUDIO_MEMORY8_CY15B104) {
addr *= 2;
SPI.beginTransaction(SPISETTING);
digitalWriteFast(SPIRAM_CS_PIN, LOW);
SPI.transfer(0x06); //write-enable before every write
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
asm volatile ("NOP\n NOP\n NOP\n NOP\n NOP\n NOP\n");
digitalWriteFast(SPIRAM_CS_PIN, LOW);
SPI.transfer16((0x02 << 8) | (addr >> 16));
SPI.transfer16(addr & 0xFFFF);
while (count) {
int16_t w = 0;
if (data) w = *data++;
SPI.transfer16(w);
count--;
}
digitalWriteFast(SPIRAM_CS_PIN, HIGH);
SPI.endTransaction();
} else if (memory_type == AUDIO_MEMORY8_MEMORYBOARD) {
SPI.beginTransaction(SPISETTING);
while (count) {
uint32_t chip = (addr >> 16) + 1;
digitalWriteFast(MEMBOARD_CS0_PIN, chip & 1);
digitalWriteFast(MEMBOARD_CS1_PIN, chip & 2);
digitalWriteFast(MEMBOARD_CS2_PIN, chip & 4);
uint32_t chipaddr = (addr & 0xFFFF) << 1;
SPI.transfer16((0x02 << 8) | (chipaddr >> 16));
SPI.transfer16(chipaddr & 0xFFFF);
uint32_t num = 0x10000 - (addr & 0xFFFF);
if (num > count) num = count;
count -= num;
addr += num;
do {
int16_t w = 0;
if (data) w = *data++;
SPI.transfer16(w);
} while (--num > 0);
}
digitalWriteFast(MEMBOARD_CS0_PIN, LOW);
digitalWriteFast(MEMBOARD_CS1_PIN, LOW);
digitalWriteFast(MEMBOARD_CS2_PIN, LOW);
SPI.endTransaction();
}
#endif
}

@ -23,39 +23,28 @@
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE. * THE SOFTWARE.
*/ */
/* Added AUDIO_MEMORY_PSRAM_8MB
* see https://forum.pjrc.com/threads/29276-Limits-of-delay-effect-in-audio-library/page5?highlight=APS6404L-3SQR
* wirtz@parasitstudio.de
*/
#ifndef effect_delay_ext8_h_ #ifndef effect_delay_ext8_h_
#define effect_delay_ext8_h_ #define effect_delay_ext8_h_
#include "Arduino.h" #include "Arduino.h"
#include "AudioStream.h" #include "AudioStream.h"
#include "spi_interrupt.h" #include "spi_interrupt.h"
#include "extmem.h"
enum AudioEffectDelayMemoryType8_t {
AUDIO_MEMORY8_23LC1024 = 0, // 128k x 8 S-RAM
AUDIO_MEMORY8_MEMORYBOARD = 1,
AUDIO_MEMORY8_CY15B104 = 2, // 512k x 8 F-RAM
AUDIO_MEMORY8_PSRAM_8MB = 3, // 8192k x 8 PS-RAM
AUDIO_MEMORY8_UNDEFINED = 4
};
class AudioEffectDelayExternal8 : public AudioStream class AudioEffectDelayExternal8 : public AudioStream, public AudioExtMem
{ {
public: public:
AudioEffectDelayExternal8() : AudioStream(1, inputQueueArray) { AudioEffectDelayExternal8(AudioEffectDelayMemoryType_t type, float milliseconds=1e6)
initialize(AUDIO_MEMORY8_23LC1024, 65536); : AudioStream(1, inputQueueArray),
} AudioExtMem(type, (milliseconds*(AUDIO_SAMPLE_RATE_EXACT/1000.0f))+0.5f),
AudioEffectDelayExternal8(AudioEffectDelayMemoryType8_t type, float milliseconds=1e6) activemask(0)
: AudioStream(1, inputQueueArray) { {}
uint32_t n = (milliseconds*(AUDIO_SAMPLE_RATE_EXACT/1000.0f))+0.5f; AudioEffectDelayExternal8() : AudioEffectDelayExternal8(AUDIO_MEMORY_23LC1024) {}
initialize(type, n);
}
~AudioEffectDelayExternal8() {}
void delay(uint8_t channel, float milliseconds) { void delay(uint8_t channel, float milliseconds) {
if (channel >= 8 || memory_type >= AUDIO_MEMORY8_UNDEFINED) return; if (channel >= 8 || memory_type >= AUDIO_MEMORY_UNDEFINED) return;
if (milliseconds < 0.0f) milliseconds = 0.0f; if (milliseconds < 0.0f) milliseconds = 0.0f;
uint32_t n = (milliseconds*(AUDIO_SAMPLE_RATE_EXACT/1000.0f))+0.5f; uint32_t n = (milliseconds*(AUDIO_SAMPLE_RATE_EXACT/1000.0f))+0.5f;
n += AUDIO_BLOCK_SAMPLES; n += AUDIO_BLOCK_SAMPLES;
@ -63,30 +52,19 @@ public:
n = memory_length - AUDIO_BLOCK_SAMPLES; n = memory_length - AUDIO_BLOCK_SAMPLES;
delay_length[channel] = n; delay_length[channel] = n;
uint8_t mask = activemask; uint8_t mask = activemask;
if (activemask == 0) AudioStartUsingSPI(); if (activemask == 0 && IS_SPI_TYPE) AudioStartUsingSPI();
activemask = mask | (1<<channel); activemask = mask | (1<<channel);
} }
void disable(uint8_t channel) { void disable(uint8_t channel) {
if (channel >= 8) return; if (channel >= 8) return;
uint8_t mask = activemask & ~(1<<channel); uint8_t mask = activemask & ~(1<<channel);
activemask = mask; activemask = mask;
if (mask == 0) AudioStopUsingSPI(); if (mask == 0 && IS_SPI_TYPE) AudioStopUsingSPI();
} }
virtual void update(void); virtual void update(void);
private: private:
void initialize(AudioEffectDelayMemoryType8_t type, uint32_t samples);
void read(uint32_t address, uint32_t count, int16_t *data);
void write(uint32_t address, uint32_t count, const int16_t *data);
void zero(uint32_t address, uint32_t count) {
write(address, count, NULL);
}
uint32_t memory_begin; // the first address in the memory we're using
uint32_t memory_length; // the amount of memory we're using
uint32_t head_offset; // head index (incoming) data into external memory
uint32_t delay_length[8]; // # of sample delay for each channel (128 = no delay) uint32_t delay_length[8]; // # of sample delay for each channel (128 = no delay)
uint8_t activemask; // which output channels are active uint8_t activemask; // which output channels are active
uint8_t memory_type; // 0=23LC1024, 1=Frank's Memoryboard
static uint32_t allocated[2];
audio_block_t *inputQueueArray[1]; audio_block_t *inputQueueArray[1];
}; };

Loading…
Cancel
Save