Cleanup of tremolo and analog delay effects

pull/14/head
Blackaddr 3 years ago
parent ee8419cc15
commit 398e419f92
  1. 54
      examples/Basic/BA0_HelloAudioWorld/BA0_HelloAudioWorld.ino
  2. 91
      examples/Basic/BA1_DelayAndReverb/BA1_DelayAndReverb.ino
  3. 33
      examples/Delay/AnalogDelayDemo/AnalogDelayDemo.ino
  4. 40
      examples/Delay/AnalogDelayDemoExpansion/AnalogDelayDemoExpansion.ino
  5. 88
      examples/Tests/BAExpansionCalibrate/BAExpansionCalibrate.ino
  6. 80
      examples/Tests/TGA_PRO_Basic_Test/PhysicalControls.cpp
  7. 140
      examples/Tests/TGA_PRO_Basic_Test/TGA_PRO_Basic_Test.ino
  8. 81
      examples/Tests/TGA_PRO_Basic_Test/UartTest.cpp
  9. 129
      examples/Tests/TGA_PRO_Basic_Test/spiTest.cpp

@ -0,0 +1,54 @@
/*************************************************************************
* This demo uses the BALibrary library to provide enhanced control of
* the TGA Pro board.
*
* The latest copy of the BA Guitar library can be obtained from
* https://github.com/Blackaddr/BALibrary
*
* This demo provides a very simple pass-through, clean audio example.
* This can be used to double checking everything is hooked up and working correctly.
*
* This example also demonstrates the bare minimum code necessary to pass audio
* through the TGA Pro:
* - BAAudioControlWM8731 to enable and control the CODEC
* - AudioInputI2S to receive input audio from the CODEC (it's ADC)
* - AudioOutputI2S to send output audio to the CODEC (it's DAC)
*
*/
#include <Audio.h>
#include "BALibrary.h"
using namespace BALibrary; // This prevents us having to put BALibrary:: in front of all the Blackaddr Audio components
BAAudioControlWM8731 codecControl;
AudioInputI2S i2sIn;
AudioOutputI2S i2sOut;
// Audio Connections: name(channel)
// - Setup a mono signal chain, send the mono signal to both output channels in case you are using headphone
// i2sIn(0) --> i2sOut(0)
// i2sIn(1) --> i2sOut(1)
AudioConnection patch0(i2sIn, 0, i2sOut, 0); // connect the cab filter to the output.
AudioConnection patch1(i2sIn, 0, i2sOut, 1); // connect the cab filter to the output.
void setup() {
TGA_PRO_MKII_REV1(); // Declare the version of the TGA Pro you are using.
//TGA_PRO_REVB(x);
//TGA_PRO_REVA(x);
delay(5); // wait a few ms to make sure the GTA Pro is fully powered up
AudioMemory(48); // Provide an arbitrarily large number of audio buffers (48 blocks) for the effects (delays use a lot more than others)
// If the codec was already powered up (due to reboot) power it down first
codecControl.disable();
delay(100);
codecControl.enable();
delay(100);
}
void loop() {
// The audio flows automatically through the Teensy Audio Library
}

@ -0,0 +1,91 @@
/*************************************************************************
* This demo uses the BALibrary library to provide enhanced control of
* the TGA Pro board.
*
* The latest copy of the BA Guitar library can be obtained from
* https://github.com/Blackaddr/BALibrary
*
* This demo provides an example guitar tone consisting of some slap-back delay,
* followed by a reverb and a low-pass cabinet filter.
*
* This example uses very simple versions of these effects in the PJRC Audio
* Library to make it a bit easier to learn how all this stuff works. More advanced
* and better sounding effects are available from the Teensy Audio community.
*
* A mild cab filter is used in case you are using headphones.
*/
#include <Wire.h>
#include <Audio.h>
#include <MIDI.h>
#include "BALibrary.h"
using namespace BALibrary;
BAAudioControlWM8731 codecControl;
AudioInputI2S i2sIn;
AudioOutputI2S i2sOut;
AudioMixer4 gainModule; // This will be used simply to reduce the gain before the reverb
AudioEffectDelay delayModule; // we'll add a little slapback echo
AudioEffectReverb reverb; // Add a bit of 'verb to our tone
AudioMixer4 mixer; // Used to mix the original dry with the wet (effects) path.
AudioFilterBiquad cabFilter; // We'll want something to cut out the highs and smooth the tone, just like a guitar cab.
// Audio Connections: name(channel)
// - Setup a mono signal chain, send the mono signal to both output channels
// - The reverb effect doesn't mix the dry signal, so we'll do that ourselves with the mixer effect.
// - We need to reduce the gain into the reverb to prevent it's filters clipping
// - mix the wet and the dry together, then send to a cabFilter then to the output.
// i2sIn(0) --> mixer(0)
// i2sIn(0) --> delayModule(0) --> gainModule(0) --> reverb(0) --> mixer(1)
// mixer(0) --> cabFilter(0) --> i2sOut(1)
AudioConnection patchIn(i2sIn,0, delayModule, 0); // route the input to the delay
AudioConnection patch2(delayModule,0, gainModule, 0); // send the delay to the gain module
AudioConnection patch2b(gainModule, 0, reverb, 0); // then to the reverb
AudioConnection patch1(i2sIn,0, mixer,0); // mixer input 0 is our original dry signal
AudioConnection patch3(reverb, 0, mixer, 1); // mixer input 1 is our wet
AudioConnection patch4(mixer, 0, cabFilter, 0); // mixer outpt to the cabinet filter
AudioConnection patch5(cabFilter, 0, i2sOut, 0); // connect the cab filter to the output.
AudioConnection patch5b(cabFilter, 0, i2sOut, 1); // connect the cab filter to the output.
void setup() {
TGA_PRO_MKII_REV1(); // Declare the version of the TGA Pro you are using.
//TGA_PRO_REVB(x);
//TGA_PRO_REVA(x);
delay(5); // wait a few ms to make sure the GTA Pro is fully powered up
AudioMemory(48); // Provide an arbitrarily large number of audio buffers (48 blocks) for the effects (delays use a lot more than others)
// If the codec was already powered up (due to reboot) power it down first
codecControl.disable();
delay(100);
codecControl.enable();
delay(100);
// Configure our effects
delayModule.delay(0, 50.0f); // 50 ms slapback delay
gainModule.gain(0, 0.25); // the reverb unit clips easily if the input is too high
mixer.gain(0, 1.0f); // unity gain on the dry
mixer.gain(1, 1.0f); // unity gain on the wet
// Setup 2-stages of LPF, cutoff 4500 Hz, Q-factor 0.7071 (a 'normal' Q-factor)
cabFilter.setLowpass(0, 4500, .7071);
cabFilter.setLowpass(1, 4500, .7071);
}
void loop() {
// The audio flows automatically through the Teensy Audio Library
}

@ -31,6 +31,7 @@ BAAudioControlWM8731 codec;
// YOU MUST USE TEENSYDUINO 1.41 or greater
// YOU MUST COMPILE THIS DEMO USING Serial + Midi
#define USE_CAB_FILTER // uncomment this line to add a simple low-pass filter to simulate a cabinet if you are going straight to headphones
//#define USE_EXT // uncomment this line to use External MEM0
#define MIDI_DEBUG // uncomment to see raw MIDI info in terminal
@ -53,18 +54,32 @@ AudioEffectAnalogDelay analogDelay(200.0f); // max delay of 200 ms or internal.
// If you use external SPI memory you can get up to 1485.0f ms of delay!
#endif
#if defined(USE_CAB_FILTER)
AudioFilterBiquad cabFilter; // We'll want something to cut out the highs and smooth the tone, just like a guitar cab.
#endif
// Simply connect the input to the delay, and the output
// to both i2s channels
AudioConnection input(i2sIn,0, analogDelay,0);
#if defined(USE_CAB_FILTER)
AudioConnection delayOut(analogDelay, 0, cabFilter, 0);
AudioConnection leftOut(cabFilter,0, i2sOut, 0);
AudioConnection rightOut(cabFilter,0, i2sOut, 1);
#else
AudioConnection leftOut(analogDelay,0, i2sOut, 0);
AudioConnection rightOut(analogDelay,0, i2sOut, 1);
#endif
int loopCount = 0;
elapsedMillis timer;
void setup() {
TGA_PRO_MKII_REV1(); // Declare the version of the TGA Pro you are using.
//TGA_PRO_REVB(x);
//TGA_PRO_REVA(x);
#ifdef USE_EXT
SPI_MEM0_4M();
//SPI_MEM0_1M(); // use this line instead of you have the older 1Mbit memory
#endif
delay(100);
Serial.begin(57600); // Start the serial port
@ -82,7 +97,6 @@ void setup() {
// If using external memory request request memory from the manager
// for the slot
#ifdef USE_EXT
SPI_MEM0_1M();
Serial.println("Using EXTERNAL memory");
// We have to request memory be allocated to our slot.
externalSram.requestMemory(&delaySlot, 500.0f, MemSelect::MEM0, true);
@ -116,9 +130,11 @@ void setup() {
//analogDelay.setFilter(AudioEffectAnalogDelay::Filter::WARM); // A warm filter with a smooth frequency rolloff above 2Khz
//analogDelay.setFilter(AudioEffectAnalogDelay::Filter::DARK); // A very dark filter, with a sharp rolloff above 1Khz
// Setup 2-stages of LPF, cutoff 4500 Hz, Q-factor 0.7071 (a 'normal' Q-factor)
#if defined(USE_CAB_FILTER)
// Guitar cabinet: Setup 2-stages of LPF, cutoff 4500 Hz, Q-factor 0.7071 (a 'normal' Q-factor)
cabFilter.setLowpass(0, 4500, .7071);
cabFilter.setLowpass(1, 4500, .7071);
#endif
}
void OnControlChange(byte channel, byte control, byte value) {
@ -138,14 +154,15 @@ void loop() {
// usbMIDI.read() needs to be called rapidly from loop(). When
// each MIDI messages arrives, it return true. The message must
// be fully processed before usbMIDI.read() is called again.
if (loopCount % 524288 == 0) {
if (timer > 1000) {
timer = 0;
Serial.print("Processor Usage, Total: "); Serial.print(AudioProcessorUsage());
Serial.print("% ");
Serial.print(" analogDelay: "); Serial.print(analogDelay.processorUsage());
Serial.println("%");
}
loopCount++;
// check for new MIDI from USB
if (usbMIDI.read()) {

@ -28,12 +28,13 @@
using namespace BAEffects;
using namespace BALibrary;
//#define USE_CAB_FILTER // uncomment this line to add a simple low-pass filter to simulate a cabinet if you are going straight to headphones
//#define USE_EXT // uncomment this line to use External MEM0
AudioInputI2S i2sIn;
AudioOutputI2S i2sOut;
BAAudioControlWM8731 codec;
//#define USE_EXT // uncomment this line to use External MEM0
#ifdef USE_EXT
// If using external SPI memory, we will instantiate a SRAM
// manager and create an external memory slot to use as the memory
@ -53,15 +54,19 @@ AudioEffectAnalogDelay analogDelay(200.0f); // set the max delay of 200 ms.
// If you use external SPI memory you can get up to 1485.0f ms of delay!
#endif
#if defined(USE_CAB_FILTER)
AudioFilterBiquad cabFilter; // We'll want something to cut out the highs and smooth the tone, just like a guitar cab.
#endif
// Simply connect the input to the delay, and the output
// to both i2s channels
AudioConnection input(i2sIn,0, analogDelay,0);
#if defined(USE_CAB_FILTER)
AudioConnection delayOut(analogDelay, 0, cabFilter, 0);
AudioConnection leftOut(cabFilter,0, i2sOut, 0);
AudioConnection rightOut(cabFilter,0, i2sOut, 1);
#else
AudioConnection leftOut(analogDelay,0, i2sOut, 0);
AudioConnection rightOut(analogDelay,0, i2sOut, 1);
#endif
//////////////////////////////////////////
// SETUP PHYSICAL CONTROLS
@ -83,7 +88,7 @@ constexpr bool potSwapDirection = true;
// Blackaddr Audio Expansion Board.
BAPhysicalControls controls(BA_EXPAND_NUM_SW, BA_EXPAND_NUM_POT, BA_EXPAND_NUM_ENC, BA_EXPAND_NUM_LED);
int loopCount = 0;
elapsedMillis timer;
unsigned filterIndex = 0; // variable for storing which analog filter we're currently using.
constexpr unsigned MAX_HEADPHONE_VOL = 10;
unsigned headphoneVolume = 8; // control headphone volume from 0 to 10.
@ -92,13 +97,21 @@ unsigned headphoneVolume = 8; // control headphone volume from 0 to 10.
int bypassHandle, filterHandle, delayHandle, feedbackHandle, mixHandle, led1Handle, led2Handle; // Handles for the various controls
void setup() {
TGA_PRO_MKII_REV1(); // Declare the version of the TGA Pro you are using.
//TGA_PRO_REVB(x);
//TGA_PRO_REVA(x);
#ifdef USE_EXT
SPI_MEM0_4M();
//SPI_MEM0_1M(); // use this line instead of you have the older 1Mbit memory
#endif
delay(100); // wait a bit for serial to be available
Serial.begin(57600); // Start the serial port
delay(100);
// Configure the hardware
SPI_MEM0_1M();
// Setup the controls. The return value is the handle to use when checking for control changes, etc.
// pushbuttons
bypassHandle = controls.addSwitch(BA_EXPAND_SW1_PIN); // will be used for bypass control
@ -137,6 +150,7 @@ void setup() {
// Set some default values.
// These can be changed using the controls on the Blackaddr Audio Expansion Board
analogDelay.bypass(false);
controls.setOutput(led1Handle, !analogDelay.isBypass()); // Set the LED when NOT bypassed
analogDelay.mix(0.5f);
analogDelay.feedback(0.0f);
@ -147,9 +161,11 @@ void setup() {
//analogDelay.setFilter(AudioEffectAnalogDelay::Filter::WARM); // A warm filter with a smooth frequency rolloff above 2Khz
//analogDelay.setFilter(AudioEffectAnalogDelay::Filter::DARK); // A very dark filter, with a sharp rolloff above 1Khz
#if defined(USE_CAB_FILTER)
// Guitar cabinet: Setup 2-stages of LPF, cutoff 4500 Hz, Q-factor 0.7071 (a 'normal' Q-factor)
cabFilter.setLowpass(0, 4500, .7071);
cabFilter.setLowpass(1, 4500, .7071);
#endif
}
void loop() {
@ -213,14 +229,14 @@ void loop() {
}
}
// Use the loopCounter to roughly measure human timescales. Every few seconds, print the CPU usage
// to the serial port. About 500,000 loops!
if (loopCount % 524288 == 0) {
delay(20); // Without some minimal delay here it will be difficult for the pots/switch changes to be detected.
if (timer > 1000) {
timer = 0;
Serial.print("Processor Usage, Total: "); Serial.print(AudioProcessorUsage());
Serial.print("% ");
Serial.print(" analogDelay: "); Serial.print(analogDelay.processorUsage());
Serial.println("%");
}
loopCount++;
}

@ -0,0 +1,88 @@
/*************************************************************************
* This demo uses the BALibrary library to provide enhanced control of
* the TGA Pro board.
*
* The latest copy of the BA Guitar library can be obtained from
* https://github.com/Blackaddr/BALibrary
*
* This program can be used to find out the calibration values for each of your POTs
* on the Blackaddr Audio Expansion Control Board.
*
* Normally the default values used in the BALibrary are appropriate for the Expansion
* Control Board, however you an use this program as a reference for calibrating pots
* in a custom design.
*
* USE THE ARDUINO SERIAL MONITOR TO PERFORM THE CALIBRATION
*
* When prompted turn the appropriate POT in the specified direction and
* enter any character on the terminal input line and press enter to send the character.
*/
#include "BALibrary.h"
using namespace BALibrary;
// Create physical controls for Expansion Board, 2 switches, 3 pots, 0 encoders, 2 LEDs
BAPhysicalControls controls(BA_EXPAND_NUM_SW, BA_EXPAND_NUM_POT, 0, BA_EXPAND_NUM_LED);
void setup() {
delay(100);
Serial.begin(57600);
delay(500); // long delay to wait for Serial to init
Serial.flush();
TGA_PRO_MKII_REV1(); // Declare the version of the TGA Pro you are using.
//TGA_PRO_REVB(x);
//TGA_PRO_REVA(x);
// put your setup code here, to run once:
Serial.println("Calibrating POT1");
Potentiometer::Calib pot1Calib = Potentiometer::calibrate(BA_EXPAND_POT1_PIN);
if (pot1Calib.min == pot1Calib.max) { Serial.println("\n!!! The knob didn't appear to move. Are you SURE you're turning the right knob? !!!"); }
Serial.println("\nCalibrating POT2");
Potentiometer::Calib pot2Calib = Potentiometer::calibrate(BA_EXPAND_POT2_PIN);
if (pot2Calib.min == pot2Calib.max) { Serial.println("\n!!! The knob didn't appear to move. Are you SURE you're turning the right knob? !!!"); }
Serial.println("\nCalibrating POT3");
Potentiometer::Calib pot3Calib = Potentiometer::calibrate(BA_EXPAND_POT3_PIN);
if (pot3Calib.min == pot3Calib.max) { Serial.println("\n!!! The knob didn't appear to move. Are you SURE you're turning the right knob? !!!"); }
// Create the controls using the calib values
controls.addPot(BA_EXPAND_POT1_PIN, pot1Calib.min, pot1Calib.max, pot1Calib.swap);
controls.addPot(BA_EXPAND_POT2_PIN, pot2Calib.min, pot2Calib.max, pot2Calib.swap);
controls.addPot(BA_EXPAND_POT3_PIN, pot3Calib.min, pot3Calib.max, pot3Calib.swap);
// Add the pushbuttons
controls.addSwitch(BA_EXPAND_SW1_PIN);
controls.addSwitch(BA_EXPAND_SW2_PIN);
// Setup the LEDs
controls.addOutput(BA_EXPAND_LED1_PIN);
controls.setOutput(BA_EXPAND_LED1_PIN, 0);
controls.addOutput(BA_EXPAND_LED2_PIN);
controls.setOutput(BA_EXPAND_LED2_PIN, 0);
Serial.println("DONE SETUP! Try turning knobs and pushing buttons!\n");
}
void loop() {
// put your main code here, to run repeatedly:
float value;
for (unsigned i=0; i<BA_EXPAND_NUM_POT; i++) {
if (controls.checkPotValue(i, value)) {
Serial.println(String("POT") + (i+1) + String(" new value: ") + value);
}
}
// Check pushbuttons
for (unsigned i=0; i<BA_EXPAND_NUM_SW; i++) {
if (controls.isSwitchToggled(i)) {
Serial.println(String("Button") + (i+1) + String(" pushed!"));
controls.toggleOutput(i);
}
}
delay(10);
}

@ -0,0 +1,80 @@
#include "BALibrary.h"
using namespace BALibrary;
constexpr int potCalibMin = 8;
constexpr int potCalibMax = 1016;
constexpr bool potSwapDirection = true;
int pot1Handle, pot2Handle, pot3Handle, sw1Handle, sw2Handle, led1Handle, led2Handle;
bool mute = false;
BAAudioControlWM8731 *codecPtr = nullptr;
BAPhysicalControls *controlPtr = nullptr;
void configPhysicalControls(BAPhysicalControls &controls, BAAudioControlWM8731 &codec)
{
// Setup the controls. The return value is the handle to use when checking for control changes, etc.
// pushbuttons
sw1Handle = controls.addSwitch(BA_EXPAND_SW1_PIN);
sw2Handle = controls.addSwitch(BA_EXPAND_SW2_PIN);
// pots
pot1Handle = controls.addPot(BA_EXPAND_POT1_PIN, potCalibMin, potCalibMax, potSwapDirection);
pot2Handle = controls.addPot(BA_EXPAND_POT2_PIN, potCalibMin, potCalibMax, potSwapDirection);
pot3Handle = controls.addPot(BA_EXPAND_POT3_PIN, potCalibMin, potCalibMax, potSwapDirection);
// leds
led1Handle = controls.addOutput(BA_EXPAND_LED1_PIN);
led2Handle = controls.addOutput(BA_EXPAND_LED2_PIN); // will illuminate when pressing SW2
controlPtr = &controls;
codecPtr = &codec;
}
void checkPot(unsigned id)
{
float potValue;
unsigned handle;
switch(id) {
case 0 :
handle = pot1Handle;
break;
case 1 :
handle = pot2Handle;
break;
case 2 :
handle = pot3Handle;
break;
default :
handle = pot1Handle;
}
if (controlPtr->checkPotValue(handle, potValue)) {
// Pot has changed
codecPtr->setHeadphoneVolume(potValue);
Serial.println(String("POT") + id + String(" value: ") + potValue);
}
}
void checkSwitch(unsigned id)
{
unsigned swHandle;
unsigned ledHandle;
switch(id) {
case 0 :
swHandle = sw1Handle;
ledHandle = led1Handle;
break;
case 1 :
swHandle = sw2Handle;
ledHandle = led2Handle;
break;
default :
swHandle = sw1Handle;
ledHandle = led1Handle;
}
if (controlPtr->isSwitchToggled(swHandle)) {
Serial.println(String("Button ") + id + String(" pressed"));
}
bool pressed = controlPtr->isSwitchHeld(swHandle);
controlPtr->setOutput(ledHandle, pressed);
}

@ -0,0 +1,140 @@
/*************************************************************************
* This demo is used for manufacturing testing on the TGA Pro Expansion
* Control Board.
*
* This will test the following on the TGA Pro:
*
* - Audio INPUT and OUTPUT JACKS
* - Midi INPUT and Midi OUTPUT jacks
* - MEM0 (if installed)
* - MEM1 (if installed)
* - User LED
*
* This will also test the Expansion Control Board (if installed):
*
* - three POT knobs
* - two pushbutton SWitches
* - two LEDs
* - headphone output
*
* SETUP INSTRUCTIONS:
*
* 1) Connect an audio source to AUDIO INPUT.
* 2) Connect AUDIO OUTPUT to amp, stereo, headphone amplifier, etc.
* 3) if testing the MIDI ports, connect a MIDI cable between MIDI INPUT and MIDI OUTPUT
* 4) comment out any tests you want to skip
* 5) Compile and run the demo on your Teensy with TGA Pro.
* 6) Launch the Arduino Serial Monitor to see results.
*
* TESTING INSTRUCTIONS:
*
* 1) Check the Serial Monitor for the results of the MIDI testing, and external memory testing.
* 2) Confirm that the audio sent to the INPUT is coming out the OUTPUT.
* 3) Confirm the User LED is blinking every 1 or 2 seconds
*
* If using the Expansion Control Board:
*
* 1) Try pushing the pushbuttons. When pushed, they should turn on their corresponding LED.
* 2) Try turn each of the knobs one at a time. They should adjust the volume.
*
* The latest copy of the BA Guitar library can be obtained from
* https://github.com/Blackaddr/BALibrary
*
*/
#define RUN_MIDI_TEST // Uncomment this line to run a MIDI test. You must connect a MIDI cable as a loopback between the MIDI input and output jacks.
#define RUN_MEMO_TEST // Uncomment this line if you purchased the option SPI RAM.
#define RUN_EXP_TEST // Uncomment if you purchased the Expansion Control Board
#include <Audio.h>
#include "BALibrary.h"
using namespace BALibrary;
AudioInputI2S i2sIn;
AudioOutputI2S i2sOut;
// Audio Thru Connection
AudioConnection patch0(i2sIn,0, i2sOut, 0);
AudioConnection patch1(i2sIn,1, i2sOut, 1);
BAAudioControlWM8731 codec;
BAGpio gpio; // access to User LED
elapsedMillis timer;
#if defined(RUN_MEMO_TEST)
BASpiMemoryDMA spiMem0(SpiDeviceId::SPI_DEVICE0);
#endif
#if defined(RUN_MEM1_TEST) && !defined(__IMXRT1062__) // SPI1 not supported on T4.0
BASpiMemoryDMA spiMem1(SpiDeviceId::SPI_DEVICE1);
#endif
// Create a control object using the number of switches, pots, encoders and outputs on the
// Blackaddr Audio Expansion Board.
#ifdef RUN_EXP_TEST
BAPhysicalControls controls(BA_EXPAND_NUM_SW, BA_EXPAND_NUM_POT, BA_EXPAND_NUM_ENC, BA_EXPAND_NUM_LED);
void configPhysicalControls(BAPhysicalControls &controls, BAAudioControlWM8731 &codec);
void checkPot(unsigned id);
void checkSwitch(unsigned id);
#endif
bool spiTest(BASpiMemory *mem, int id); // returns true if passed
bool uartTest(); // returns true if passed
unsigned loopCounter = 0;
void setup() {
TGA_PRO_MKII_REV1(); // Declare the version of the TGA Pro you are using.
//TGA_PRO_REVB(x);
//TGA_PRO_REVA(x);
Serial.begin(57600);
//while (!Serial) { yield(); }
delay(500);
// Disable the audio codec first
codec.disable();
delay(100);
AudioMemory(64);
codec.enable();
codec.setHeadphoneVolume(0.8f); // Set headphone volume
configPhysicalControls(controls, codec);
// Run the initial Midi connectivity and SPI memory tests.
#if defined(RUN_MIDI_TEST)
if (uartTest()) { Serial.println("MIDI Ports testing PASSED!"); }
#endif
#if defined(RUN_MEMO_TEST)
SPI_MEM0_4M(); // Declare the correct memory size
// SPI_MEM0_1M(); // older boards only had 1M memories
spiMem0.begin(); delay(10);
if (spiTest(&spiMem0, 0)) { Serial.println("SPI0 testing PASSED!");}
#endif
#if defined(RUN_EXP_TEST)
Serial.println("Now monitoring for input from Expansion Control Board");
#endif
}
void loop() {
#if defined(RUN_EXP_TEST)
checkPot(0);
checkPot(1);
checkPot(2);
checkSwitch(0);
checkSwitch(1);
#endif
delay(20); // Without some minimal delay here it will be difficult for the pots/switch changes to be detected.
loopCounter++;
if (timer > 1000) {
timer = 0;
gpio.toggleLed(); // toggle the user LED every 1 second
}
}

@ -0,0 +1,81 @@
#include "BAHardware.h"
#include "BASpiMemory.h"
using namespace BALibrary;
constexpr unsigned MIDI_RATE = 31250;
constexpr unsigned HIGH_RATE = 230400;
constexpr unsigned TEST_TIME = 5; // 5 second test each
static unsigned baudRate = MIDI_RATE; // start with low speed
static uint8_t writeData = 0;
static unsigned loopCounter = 0;
static unsigned errorCount = 0;
static bool testFailed = false;
static bool testDone = false;
static unsigned testPhase = 0; // 0 for MIDI speed, 1 for high speed.
bool uartTest(void)
{
Serial1.begin(baudRate, SERIAL_8N1);
delay(100);
while(!Serial) {}
Serial.println(String("\nRunning MIDI Port speed test at ") + baudRate);
// write the first data
Serial1.write(writeData);
while(!testFailed && !testDone) {
if (loopCounter >= (baudRate/4)) { // the divisor determines how long the test runs for
// next test
switch (testPhase) {
case 0 :
baudRate = HIGH_RATE;
break;
case 1 :
testDone = true;
}
if (errorCount == 0) { Serial.println("TEST PASSED!"); }
else {
Serial.println("MIDI PORT TEST FAILED!");
}
errorCount = 0;
testPhase++;
loopCounter = 0;
if (!testDone) {
Serial.println(String("\nRunning MIDI Port speed test at ") + baudRate);
Serial1.begin(baudRate, SERIAL_8N1);
while (!Serial1) {} // wait for serial to be ready
} else {
Serial.println("MIDI PORT TEST DONE!\n");
}
}
// Wait for read data
if (Serial1.available()) {
uint8_t readData= Serial1.read();
if (readData != writeData) {
Serial.println(String("MIDI ERROR: readData = ") + readData + String(" writeData = ") + writeData);
errorCount++;
}
if ((loopCounter % (baudRate/64)) == 0) { // the divisor determines how often the period is printed
Serial.print("."); Serial.flush();
}
if (errorCount > 16) {
Serial.println("Halting test");
testFailed = true;
}
loopCounter++;
writeData++;
Serial1.write(writeData);
}
}
return testFailed;
}

@ -0,0 +1,129 @@
#include <cstddef>
#include <cstdint>
#include "BAHardware.h"
#include "BASpiMemory.h"
constexpr int NUM_TESTS = 12;
constexpr int NUM_BLOCK_WORDS = 128;
constexpr int mask0 = 0x5555;
constexpr int mask1 = 0xaaaa;
//#define SANITY_CHECK
using namespace BALibrary;
int SPI_MAX_ADDR = 0;
int calcData(int spiAddress, int loopPhase, int maskPhase)
{
int data;
int phase = ((loopPhase << 1) + maskPhase) & 0x3;
switch(phase)
{
case 0 :
data = spiAddress ^ mask0;
break;
case 1:
data = spiAddress ^ mask1;
break;
case 2:
data = ~spiAddress ^ mask0;
break;
case 3:
data = ~spiAddress ^ mask1;
}
return (data & 0xffff);
}
bool spiTest(BASpiMemory *mem, int id)
{
int spiAddress = 0;
int spiErrorCount = 0;
int maskPhase = 0;
int loopPhase = 0;
uint16_t memBlock[NUM_BLOCK_WORDS];
uint16_t goldData[NUM_BLOCK_WORDS];
SPI_MAX_ADDR = BAHardwareConfig.getSpiMemMaxAddr(0); // assume for this test both memories are the same size so use MEM0
const size_t SPI_MEM_SIZE_BYTES = BAHardwareConfig.getSpiMemSizeBytes(id);
Serial.println(String("Starting SPI MEM Test of ") + SPI_MEM_SIZE_BYTES + String(" bytes"));
for (int cnt = 0; cnt < NUM_TESTS; cnt++) {
// Zero check
mem->zero16(0, SPI_MEM_SIZE_BYTES / sizeof(uint16_t));
while (mem->isWriteBusy()) {}
for (spiAddress = 0; spiAddress <= SPI_MAX_ADDR; spiAddress += NUM_BLOCK_WORDS*sizeof(uint16_t)) {
mem->read16(spiAddress, memBlock, NUM_BLOCK_WORDS);
while (mem->isReadBusy()) {}
for (int i=0; i<NUM_BLOCK_WORDS; i++) {
if (memBlock[i] != 0) {
spiErrorCount++;
if (spiErrorCount >= 10) break;
}
}
if (spiErrorCount >= 10) break;
}
//if (spiErrorCount == 0) { Serial.println(String("SPI MEMORY(") + cnt + String("): Zero test PASSED!")); }
if (spiErrorCount == 0) { Serial.print("."); Serial.flush(); }
if (spiErrorCount > 0) { Serial.println(String("SPI MEMORY(") + cnt + String("): Zero test FAILED, error count = ") + spiErrorCount); return false;}
// Write all test data to the memory
maskPhase = 0;
for (spiAddress = 0; spiAddress <= SPI_MAX_ADDR; spiAddress += NUM_BLOCK_WORDS*sizeof(uint16_t)) {
// Calculate the data for a block
for (int i=0; i<NUM_BLOCK_WORDS; i++) {
memBlock[i] = calcData(spiAddress+i, loopPhase, maskPhase);
maskPhase = (maskPhase+1) % 2;
}
mem->write16(spiAddress, memBlock, NUM_BLOCK_WORDS);
while (mem->isWriteBusy()) {}
}
// Read back the test data
spiErrorCount = 0;
spiAddress = 0;
maskPhase = 0;
for (spiAddress = 0; spiAddress <= SPI_MAX_ADDR; spiAddress += NUM_BLOCK_WORDS*sizeof(uint16_t)) {
mem->read16(spiAddress, memBlock, NUM_BLOCK_WORDS);
// Calculate the golden data for a block
for (int i=0; i<NUM_BLOCK_WORDS; i++) {
goldData[i] = calcData(spiAddress+i, loopPhase, maskPhase);
maskPhase = (maskPhase+1) % 2;
}
while (mem->isReadBusy()) {} // wait for the read to finish
for (int i=0; i<NUM_BLOCK_WORDS; i++) {
if (goldData[i] != memBlock[i]) {
Serial.println(String("ERROR@ ") + i + String(": ") + goldData[i] + String("!=") + memBlock[i]);
spiErrorCount++;
if (spiErrorCount >= 10) break;
}
#ifdef SANITY_CHECK
else {
if ((spiAddress == 0) && (i<10) && (cnt == 0) ){
Serial.println(String("SHOW@ ") + i + String(": ") + goldData[i] + String("==") + memBlock[i]);
}
}
#endif
}
if (spiErrorCount >= 10) break;
}
//if (spiErrorCount == 0) { Serial.println(String("SPI MEMORY(") + cnt + String("): Data test PASSED!")); }
if (spiErrorCount == 0) { Serial.print("."); Serial.flush(); }
if (spiErrorCount > 0) { Serial.println(String("SPI MEMORY(") + cnt + String("): Data test FAILED, error count = ") + spiErrorCount); return false;}
loopPhase = (loopPhase+1) % 2;
}
return true;
}
Loading…
Cancel
Save