Fix issue with max delay on external memory in AudioEffectAnalogDelay

pull/14/head
Blackaddr 3 years ago
parent 7de9898bc6
commit ee8419cc15
  1. 81
      examples/BAExpansionCalibrate/BAExpansionCalibrate.ino
  2. 106
      examples/Basic/BA1_TGA_Pro_NOMEM_demo/BA1_TGA_Pro_NOMEM_demo.ino
  3. 209
      examples/Basic/BA2_TGA_Pro_1MEM/BA2_TGA_Pro_1MEM.ino
  4. 271
      examples/Basic/BA3_TGA_Pro_2MEM/BA3_TGA_Pro_2MEM.ino
  5. 76
      examples/Basic/BA4_TGA_Pro_delay_reverb/BA4_TGA_Pro_delay_reverb.ino
  6. 27
      examples/Modulation/TemoloDemo/TemoloDemo.ino
  7. 43
      examples/Modulation/TremoloDemoExpansion/TremoloDemoExpansion.ino
  8. 5
      examples/Tests/MeasureNoise/MeasureNoise.ino
  9. 80
      examples/Tests/TGA_PRO_MEM2_EXP/PhysicalControls.cpp
  10. 140
      examples/Tests/TGA_PRO_MEM2_EXP/TGA_PRO_MEM2_EXP.ino
  11. 81
      examples/Tests/TGA_PRO_MEM2_EXP/UartTest.cpp
  12. 129
      examples/Tests/TGA_PRO_MEM2_EXP/spiTest.cpp
  13. 45
      src/effects/AudioEffectAnalogDelay.cpp

@ -1,81 +0,0 @@
/*************************************************************************
* This demo uses the BALibrary library to provide enhanced control of
* the TGA Pro board.
*
* The latest copy of the BA Guitar library can be obtained from
* https://github.com/Blackaddr/BALibrary
*
* This program can be used to find out the calibration values for each of your POTs
* on the Blackaddr Audio Expansion Control Board.
*
* USE THE ARDUINO SERIAL MONITOR TO PERFORM THE CALIBRATION
*
* When prompted turn the appropriate POT in the specified direction and
* enter any character on the terminal input line and press enter to send the character.
*/
#include "BALibrary.h"
using namespace BALibrary;
// Create physical controls for Expansion Board, 2 switches, 3 pots, 0 encoders, 2 LEDs
BAPhysicalControls controls(BA_EXPAND_NUM_SW, BA_EXPAND_NUM_POT, 0, BA_EXPAND_NUM_LED);
void setup() {
delay(100);
Serial.begin(57600);
delay(500); // long delay to wait for Serial to init
TGA_PRO_EXPAND_REV2(); // Set the expansion board revision
// put your setup code here, to run once:
Serial.println("Calibrating POT1");
Potentiometer::Calib pot1Calib = Potentiometer::calibrate(BA_EXPAND_POT1_PIN);
if (pot1Calib.min == pot1Calib.max) { Serial.println("\n!!! The knob didn't appear to move. Are you SURE you're turning the right knob? !!!"); }
Serial.println("\nCalibrating POT2");
Potentiometer::Calib pot2Calib = Potentiometer::calibrate(BA_EXPAND_POT2_PIN);
if (pot2Calib.min == pot2Calib.max) { Serial.println("\n!!! The knob didn't appear to move. Are you SURE you're turning the right knob? !!!"); }
Serial.println("\nCalibrating POT3");
Potentiometer::Calib pot3Calib = Potentiometer::calibrate(BA_EXPAND_POT3_PIN);
if (pot3Calib.min == pot3Calib.max) { Serial.println("\n!!! The knob didn't appear to move. Are you SURE you're turning the right knob? !!!"); }
// Create the controls using the calib values
controls.addPot(BA_EXPAND_POT1_PIN, pot1Calib.min, pot1Calib.max, pot1Calib.swap);
controls.addPot(BA_EXPAND_POT2_PIN, pot2Calib.min, pot2Calib.max, pot2Calib.swap);
controls.addPot(BA_EXPAND_POT3_PIN, pot3Calib.min, pot3Calib.max, pot3Calib.swap);
// Add the pushbuttons
controls.addSwitch(BA_EXPAND_SW1_PIN);
controls.addSwitch(BA_EXPAND_SW2_PIN);
// Setup the LEDs
controls.addOutput(BA_EXPAND_LED1_PIN);
controls.setOutput(BA_EXPAND_LED1_PIN, 0);
controls.addOutput(BA_EXPAND_LED2_PIN);
controls.setOutput(BA_EXPAND_LED2_PIN, 0);
Serial.println("DONE SETUP! Try turning knobs and pushing buttons!\n");
}
void loop() {
// put your main code here, to run repeatedly:
float value;
for (unsigned i=0; i<BA_EXPAND_NUM_POT; i++) {
if (controls.checkPotValue(i, value)) {
Serial.println(String("POT") + (i+1) + String(" new value: ") + value);
}
}
// Check pushbuttons
for (unsigned i=0; i<BA_EXPAND_NUM_SW; i++) {
if (controls.isSwitchToggled(i)) {
Serial.println(String("Button") + (i+1) + String(" pushed!"));
controls.toggleOutput(i);
}
}
delay(10);
}

@ -1,106 +0,0 @@
/*************************************************************************
* This demo uses the BALibrary library to provide enhanced control of
* the TGA Pro board.
*
* The latest copy of the BA Guitar library can be obtained from
* https://github.com/Blackaddr/BALibrary
*
* This demo will provide an audio passthrough, as well as exercise the
* MIDI interface.
*
*/
#include <Wire.h>
#include <Audio.h>
#include <MIDI.h>
#include "BALibrary.h"
MIDI_CREATE_DEFAULT_INSTANCE();
using namespace midi;
using namespace BALibrary;
AudioInputI2S i2sIn;
AudioOutputI2S i2sOut;
// Audio Thru Connection
AudioConnection patch0(i2sIn,0, i2sOut, 0);
AudioConnection patch1(i2sIn,1, i2sOut, 1);
BAAudioControlWM8731 codecControl;
BAGpio gpio; // access to User LED
unsigned long t=0;
void setup() {
MIDI.begin(MIDI_CHANNEL_OMNI);
Serial.begin(57600);
delay(5);
while (!Serial) { yield(); }
// If the codec was already powered up (due to reboot) power itd own first
codecControl.disable();
delay(100);
AudioMemory(24);
Serial.println("Enabling codec...\n");
codecControl.enable();
delay(100);
}
void loop() {
///////////////////////////////////////////////////////////////////////
// MIDI TESTING
// Connect a loopback cable between the MIDI IN and MIDI OUT on the
// GTA Pro. This test code will periodically send MIDI events which
// will loop back and get printed in the Serial Monitor.
///////////////////////////////////////////////////////////////////////
DataByte note, velocity, channel, d1, d2;
// Send MIDI OUT
int cc, val=0xA, channelSend = 1;
for (cc=32; cc<40; cc++) {
MIDI.sendControlChange(cc, val, channelSend); val++; channelSend++;
delay(100);
MIDI.sendNoteOn(10, 100, channelSend);
delay(100);
}
if (MIDI.read()) { // Is there a MIDI message incoming ?
MidiType type = MIDI.getType();
Serial.println(String("MIDI IS WORKING!!!"));
switch (type) {
case NoteOn:
note = MIDI.getData1();
velocity = MIDI.getData2();
channel = MIDI.getChannel();
if (velocity > 0) {
Serial.println(String("Note On: ch=") + channel + ", note=" + note + ", velocity=" + velocity);
} else {
Serial.println(String("Note Off: ch=") + channel + ", note=" + note);
}
break;
case NoteOff:
note = MIDI.getData1();
velocity = MIDI.getData2();
channel = MIDI.getChannel();
Serial.println(String("Note Off: ch=") + channel + ", note=" + note + ", velocity=" + velocity);
break;
default:
d1 = MIDI.getData1();
d2 = MIDI.getData2();
Serial.println(String("Message, type=") + type + ", data = " + d1 + " " + d2);
}
t = millis();
}
if (millis() - t > 10000) {
t += 10000;
Serial.println("(no MIDI activity, check cables)");
}
// Toggle the USR LED state
gpio.toggleLed();
}

@ -1,209 +0,0 @@
/*************************************************************************
* This demo uses the BALibrary library to provide enhanced control of
* the TGA Pro board.
*
* The latest copy of the BA Guitar library can be obtained from
* https://github.com/Blackaddr/BALibrary
*
* This demo will provide an audio passthrough, as well as exercise the
* MIDI interface.
*
* It will also peform a sweep of SPI MEM0.
*
* NOTE: SPI MEM0 can be used by a Teensy 3.1/3.2/3.5/3.6.
* pins.
*
*/
#include <Wire.h>
#include <Audio.h>
#include <MIDI.h>
#include "BALibrary.h"
MIDI_CREATE_DEFAULT_INSTANCE();
using namespace midi;
using namespace BALibrary;
AudioInputI2S i2sIn;
AudioOutputI2S i2sOut;
// Audio Thru Connection
AudioConnection patch0(i2sIn,0, i2sOut, 0);
AudioConnection patch1(i2sIn,1, i2sOut, 1);
BAAudioControlWM8731 codecControl;
BAGpio gpio; // access to User LED
BASpiMemory spiMem0(SpiDeviceId::SPI_DEVICE0);
unsigned long t=0;
// SPI stuff
unsigned spiAddress0 = 0;
uint16_t spiData0 = 0xABCD;
int spiErrorCount0 = 0;
constexpr int mask0 = 0x5555;
constexpr int mask1 = 0xaaaa;
int maskPhase = 0;
int loopPhase = 0;
void setup() {
MIDI.begin(MIDI_CHANNEL_OMNI);
Serial.begin(57600);
while (!Serial) { yield(); }
delay(5);
SPI_MEM0_1M(); // Set the Spi memory size to 1Mbit
// If the codec was already powered up (due to reboot) power itd own first
codecControl.disable();
delay(100);
AudioMemory(24);
Serial.println("Sketch: Enabling codec...\n");
codecControl.enable();
delay(100);
Serial.println("Enabling SPI");
spiMem0.begin();
}
int calcData(int spiAddress, int loopPhase, int maskPhase)
{
int data;
int phase = ((loopPhase << 1) + maskPhase) & 0x3;
switch(phase)
{
case 0 :
data = spiAddress ^ mask0;
break;
case 1:
data = spiAddress ^ mask1;
break;
case 2:
data = ~spiAddress ^ mask0;
break;
case 3:
data = ~spiAddress ^ mask1;
}
return (data & 0xffff);
}
void loop() {
//////////////////////////////////////////////////////////////////
// Write test data to the SPI Memory 0
//////////////////////////////////////////////////////////////////
maskPhase = 0;
for (spiAddress0=0; spiAddress0 <= BAHardwareConfig.getSpiMemMaxAddr(0); spiAddress0=spiAddress0+2) {
if ((spiAddress0 % 32768) == 0) {
//Serial.print("Writing to ");
//Serial.println(spiAddress0, HEX);
}
spiData0 = calcData(spiAddress0, loopPhase, maskPhase);
spiMem0.write16(spiAddress0, spiData0);
maskPhase = (maskPhase+1) % 2;
}
Serial.println("SPI0 writing DONE!");
///////////////////////////////////////////////////////////////////
// Read back from the SPI Memory 0
///////////////////////////////////////////////////////////////////
spiErrorCount0 = 0;
spiAddress0 = 0;
maskPhase = 0;
for (spiAddress0=0; spiAddress0 <= BAHardwareConfig.getSpiMemMaxAddr(0); spiAddress0=spiAddress0+2) {
if ((spiAddress0 % 32768) == 0) {
// Serial.print("Reading ");
// Serial.print(spiAddress0, HEX);
}
spiData0 = calcData(spiAddress0, loopPhase, maskPhase);
int data = spiMem0.read16(spiAddress0);
if (data != spiData0) {
spiErrorCount0++;
Serial.println("");
Serial.print("ERROR MEM0: (expected) (actual):");
Serial.print(spiData0, HEX); Serial.print(":");
Serial.print(data, HEX);
delay(100);
}
maskPhase = (maskPhase+1) % 2;
if ((spiAddress0 % 32768) == 0) {
// Serial.print(", data = ");
// Serial.println(data, HEX);
// Serial.println(String(" loopPhase: ") + loopPhase + String(" maskPhase: ") + maskPhase);
}
// Break out of test once the error count reaches 10
if (spiErrorCount0 > 10) { break; }
}
if (spiErrorCount0 == 0) { Serial.println("SPI0 TEST PASSED!!!"); }
loopPhase = (loopPhase+1) % 2;
///////////////////////////////////////////////////////////////////////
// MIDI TESTING
// Connect a loopback cable between the MIDI IN and MIDI OUT on the
// GTA Pro. This test code will periodically send MIDI events which
// will loop back and get printed in the Serial Monitor.
///////////////////////////////////////////////////////////////////////
DataByte note, velocity, channel, d1, d2;
// Send MIDI OUT
int cc, val=0xA, channelSend = 1;
for (cc=32; cc<40; cc++) {
MIDI.sendControlChange(cc, val, channelSend); val++; channelSend++;
delay(100);
MIDI.sendNoteOn(10, 100, channelSend);
delay(100);
}
if (MIDI.read()) { // Is there a MIDI message incoming ?
MidiType type = MIDI.getType();
Serial.println(String("MIDI IS WORKING!!!"));
switch (type) {
case NoteOn:
note = MIDI.getData1();
velocity = MIDI.getData2();
channel = MIDI.getChannel();
if (velocity > 0) {
Serial.println(String("Note On: ch=") + channel + ", note=" + note + ", velocity=" + velocity);
} else {
Serial.println(String("Note Off: ch=") + channel + ", note=" + note);
}
break;
case NoteOff:
note = MIDI.getData1();
velocity = MIDI.getData2();
channel = MIDI.getChannel();
Serial.println(String("Note Off: ch=") + channel + ", note=" + note + ", velocity=" + velocity);
break;
default:
d1 = MIDI.getData1();
d2 = MIDI.getData2();
Serial.println(String("Message, type=") + type + ", data = " + d1 + " " + d2);
}
t = millis();
}
if (millis() - t > 10000) {
t += 10000;
Serial.println("(no MIDI activity, check cables)");
}
// Toggle the USR LED state
gpio.toggleLed();
}

@ -1,271 +0,0 @@
/*************************************************************************
* This demo uses the BALibrary library to provide enhanced control of
* the TGA Pro board.
*
* The latest copy of the BA Guitar library can be obtained from
* https://github.com/Blackaddr/BALibrary
*
* This demo will provide an audio passthrough, as well as exercise the
* MIDI interface.
*
* It will also peform a sweep of SPI MEM0 and MEM1.
*
* NOTE: SPI MEM0 can be used by a Teensy 3.1/3.2/3.5/3.6. SPI MEM1
* can only be used by a Teensy 3.5/3.6 since it is mapped to the extended
* pins.
*
*/
#include <Wire.h>
#include <Audio.h>
#include <MIDI.h>
#include "BALibrary.h"
MIDI_CREATE_DEFAULT_INSTANCE();
using namespace midi;
using namespace BALibrary;
AudioInputI2S i2sIn;
AudioOutputI2S i2sOut;
// Audio Thru Connection
AudioConnection patch0(i2sIn,0, i2sOut, 0);
AudioConnection patch1(i2sIn,1, i2sOut, 1);
BAAudioControlWM8731 codecControl;
BAGpio gpio; // access to User LED
BASpiMemory spiMem0(SpiDeviceId::SPI_DEVICE0);
BASpiMemory spiMem1(SpiDeviceId::SPI_DEVICE1);
unsigned long t=0;
// SPI stuff
int spiAddress0 = 0;
uint16_t spiData0 = 0xABCD;
int spiErrorCount0 = 0;
int spiAddress1 = 0;
uint16_t spiData1 = 0xDCBA;
int spiErrorCount1 = 0;
constexpr int mask0 = 0x5555;
constexpr int mask1 = 0xaaaa;
int maskPhase = 0;
int loopPhase = 0;
void setup() {
MIDI.begin(MIDI_CHANNEL_OMNI);
Serial.begin(57600);
while (!Serial) { yield(); }
delay(5);
// Set the SPI memory sizes
SPI_MEM0_1M();
SPI_MEM1_1M();
// If the codec was already powered up (due to reboot) power itd own first
codecControl.disable();
delay(100);
AudioMemory(24);
Serial.println("Sketch: Enabling codec...\n");
codecControl.enable();
delay(100);
Serial.println("Enabling SPI");
spiMem0.begin();
spiMem1.begin();
}
int calcData(int spiAddress, int loopPhase, int maskPhase)
{
int data;
int phase = ((loopPhase << 1) + maskPhase) & 0x3;
switch(phase)
{
case 0 :
data = spiAddress ^ mask0;
break;
case 1:
data = spiAddress ^ mask1;
break;
case 2:
data = ~spiAddress ^ mask0;
break;
case 3:
data = ~spiAddress ^ mask1;
}
return (data & 0xffff);
}
void loop() {
//////////////////////////////////////////////////////////////////
// Write test data to the SPI Memory 0
//////////////////////////////////////////////////////////////////
maskPhase = 0;
for (spiAddress0=0; spiAddress0 <= BAHardwareConfig.getSpiMemMaxAddr(0); spiAddress0=spiAddress0+2) {
if ((spiAddress0 % 32768) == 0) {
//Serial.print("Writing to ");
//Serial.println(spiAddress0, HEX);
}
spiData0 = calcData(spiAddress0, loopPhase, maskPhase);
spiMem0.write16(spiAddress0, spiData0);
maskPhase = (maskPhase+1) % 2;
}
Serial.println("SPI0 writing DONE!");
///////////////////////////////////////////////////////////////////
// Read back from the SPI Memory 0
///////////////////////////////////////////////////////////////////
spiErrorCount0 = 0;
spiAddress0 = 0;
maskPhase = 0;
for (spiAddress0=0; spiAddress0 <= BAHardwareConfig.getSpiMemMaxAddr(0); spiAddress0=spiAddress0+2) {
if ((spiAddress0 % 32768) == 0) {
// Serial.print("Reading ");
// Serial.print(spiAddress0, HEX);
}
spiData0 = calcData(spiAddress0, loopPhase, maskPhase);
int data = spiMem0.read16(spiAddress0);
if (data != spiData0) {
spiErrorCount0++;
Serial.println("");
Serial.print("ERROR MEM0: (expected) (actual):");
Serial.print(spiData0, HEX); Serial.print(":");
Serial.print(data, HEX);
delay(100);
}
maskPhase = (maskPhase+1) % 2;
if ((spiAddress0 % 32768) == 0) {
// Serial.print(", data = ");
// Serial.println(data, HEX);
// Serial.println(String(" loopPhase: ") + loopPhase + String(" maskPhase: ") + maskPhase);
}
// Break out of test once the error count reaches 10
if (spiErrorCount0 > 10) { break; }
}
if (spiErrorCount0 == 0) { Serial.println("SPI0 TEST PASSED!!!"); }
//////////////////////////////////////////////////////////////////
// Write test data to the SPI Memory 1
//////////////////////////////////////////////////////////////////
maskPhase = 0;
for (spiAddress1=0; spiAddress1 <= BAHardwareConfig.getSpiMemMaxAddr(1); spiAddress1+=2) {
if ((spiAddress1 % 32768) == 0) {
//Serial.print("Writing to ");
//Serial.println(spiAddress1, HEX);
}
spiData1 = calcData(spiAddress1, loopPhase, maskPhase);
spiMem1.write16(spiAddress1, spiData1);
maskPhase = (maskPhase+1) % 2;
}
Serial.println("SPI1 writing DONE!");
///////////////////////////////////////////////////////////////////
// Read back from the SPI Memory 1
///////////////////////////////////////////////////////////////////
spiErrorCount1 = 0;
spiAddress1 = 0;
maskPhase = 0;
for (spiAddress1=0; spiAddress1 <= BAHardwareConfig.getSpiMemMaxAddr(1); spiAddress1+=2) {
if ((spiAddress1 % 32768) == 0) {
//Serial.print("Reading ");
//Serial.print(spiAddress1, HEX);
}
spiData1 = calcData(spiAddress1, loopPhase, maskPhase);
uint16_t data = spiMem1.read16(spiAddress1);
if (data != spiData1) {
spiErrorCount1++;
Serial.println("");
Serial.print("ERROR MEM1: (expected) (actual):");
Serial.print(spiData1, HEX); Serial.print(":");
Serial.println(data, HEX);
delay(100);
}
maskPhase = (maskPhase+1) % 2;
if ((spiAddress1 % 32768) == 0) {
//Serial.print(", data = ");
//Serial.println(data, HEX);
}
// Break out of test once the error count reaches 10
if (spiErrorCount1 > 10) { break; }
}
if (spiErrorCount1 == 0) { Serial.println("SPI1 TEST PASSED!!!"); }
loopPhase = (loopPhase+1) % 2;
///////////////////////////////////////////////////////////////////////
// MIDI TESTING
// Connect a loopback cable between the MIDI IN and MIDI OUT on the
// GTA Pro. This test code will periodically send MIDI events which
// will loop back and get printed in the Serial Monitor.
///////////////////////////////////////////////////////////////////////
DataByte note, velocity, channel, d1, d2;
// Send MIDI OUT
int cc, val=0xA, channelSend = 1;
for (cc=32; cc<40; cc++) {
MIDI.sendControlChange(cc, val, channelSend); val++; channelSend++;
delay(100);
MIDI.sendNoteOn(10, 100, channelSend);
delay(100);
}
if (MIDI.read()) { // Is there a MIDI message incoming ?
MidiType type = MIDI.getType();
Serial.println(String("MIDI IS WORKING!!!"));
switch (type) {
case NoteOn:
note = MIDI.getData1();
velocity = MIDI.getData2();
channel = MIDI.getChannel();
if (velocity > 0) {
Serial.println(String("Note On: ch=") + channel + ", note=" + note + ", velocity=" + velocity);
} else {
Serial.println(String("Note Off: ch=") + channel + ", note=" + note);
}
break;
case NoteOff:
note = MIDI.getData1();
velocity = MIDI.getData2();
channel = MIDI.getChannel();
Serial.println(String("Note Off: ch=") + channel + ", note=" + note + ", velocity=" + velocity);
break;
default:
d1 = MIDI.getData1();
d2 = MIDI.getData2();
Serial.println(String("Message, type=") + type + ", data = " + d1 + " " + d2);
}
t = millis();
}
if (millis() - t > 10000) {
t += 10000;
Serial.println("(no MIDI activity, check cables)");
}
// Toggle the USR LED state
gpio.toggleLed();
}

@ -1,76 +0,0 @@
/*************************************************************************
* This demo uses the BALibrary library to provide enhanced control of
* the TGA Pro board.
*
* The latest copy of the BA Guitar library can be obtained from
* https://github.com/Blackaddr/BALibrary
*
* This demo provides an example guitar tone consisting of some slap-back delay,
* followed by a reverb and a low-pass cabinet filter.
*
*/
#include <Wire.h>
#include <Audio.h>
#include <MIDI.h>
#include "BALibrary.h"
using namespace BALibrary;
BAAudioControlWM8731 codecControl;
AudioInputI2S i2sIn;
AudioOutputI2S i2sOut;
AudioMixer4 gainModule; // This will be used simply to reduce the gain before the reverb
AudioEffectDelay delayModule; // we'll add a little slapback echo
AudioEffectReverb reverb; // Add a bit of 'verb to our tone
AudioMixer4 mixer; // Used to mix the original dry with the wet (effects) path.
AudioFilterBiquad cabFilter; // We'll want something to cut out the highs and smooth the tone, just like a guitar cab.
// Audio Connections
AudioConnection patchIn(i2sIn,0, delayModule, 0); // route the input to the delay
AudioConnection patch2(delayModule,0, gainModule, 0); // send the delay to the gain module
AudioConnection patch2b(gainModule, 0, reverb, 0); // then to the reverb
AudioConnection patch1(i2sIn,0, mixer,0); // mixer input 0 is our original dry signal
AudioConnection patch3(reverb, 0, mixer, 1); // mixer input 1 is our wet
AudioConnection patch4(mixer, 0, cabFilter, 0); // mixer outpt to the cabinet filter
AudioConnection patch5(cabFilter, 0, i2sOut, 0); // connect the cab filter to the output.
AudioConnection patch5b(cabFilter, 0, i2sOut, 1); // connect the cab filter to the output.
void setup() {
delay(5); // wait a few ms to make sure the GTA Pro is fully powered up
AudioMemory(48);
// If the codec was already powered up (due to reboot) power itd own first
codecControl.disable();
delay(100);
codecControl.enable();
delay(100);
// Configure our effects
delayModule.delay(0, 50.0f); // 50 ms slapback delay
gainModule.gain(0, 0.25); // the reverb unit clips easily if the input is too high
mixer.gain(0, 1.0f); // unity gain on the dry
mixer.gain(1, 1.0f); // unity gain on the wet
// Setup 2-stages of LPF, cutoff 4500 Hz, Q-factor 0.7071 (a 'normal' Q-factor)
cabFilter.setLowpass(0, 4500, .7071);
cabFilter.setLowpass(1, 4500, .7071);
}
void loop() {
// The audio flows automatically through the Teensy Audio Library
}

@ -31,22 +31,33 @@ BAAudioControlWM8731 codec;
// YOU MUST USE TEENSYDUINO 1.41 or greater
// YOU MUST COMPILE THIS DEMO USING Serial + Midi
//#define USE_CAB_FILTER // uncomment this line to add a simple low-pass filter to simulate a cabinet if you are going straight to headphones
#define MIDI_DEBUG // uncomment to see raw MIDI info in terminal
AudioEffectTremolo tremolo;
#if defined(USE_CAB_FILTER)
AudioFilterBiquad cabFilter; // We'll want something to cut out the highs and smooth the tone, just like a guitar cab.
#endif
// Simply connect the input to the tremolo, and the output
// to both i2s channels
AudioConnection input(i2sIn,0, tremolo,0);
AudioConnection tremoloOut(tremolo, 0, cabFilter, 0);
#if defined(USE_CAB_FILTER)
AudioConnection tremOut(tremolo, 0, cabFilter, 0);
AudioConnection leftOut(cabFilter,0, i2sOut, 0);
AudioConnection rightOut(cabFilter,0, i2sOut, 1);
#else
AudioConnection leftOut(tremolo,0, i2sOut, 0);
AudioConnection rightOut(tremolo,0, i2sOut, 1);
#endif
int loopCount = 0;
elapsedMillis timer;
void setup() {
TGA_PRO_MKII_REV1(); // Declare the version of the TGA Pro you are using.
//TGA_PRO_REVB(x);
//TGA_PRO_REVA(x);
delay(100);
Serial.begin(57600); // Start the serial port
@ -78,9 +89,11 @@ void setup() {
tremolo.bypass(false);
tremolo.depth(0.5f); // 50% depth modulation
// Setup 2-stages of LPF, cutoff 4500 Hz, Q-factor 0.7071 (a 'normal' Q-factor)
#if defined(USE_CAB_FILTER)
// Guitar cabinet: Setup 2-stages of LPF, cutoff 4500 Hz, Q-factor 0.7071 (a 'normal' Q-factor)
cabFilter.setLowpass(0, 4500, .7071);
cabFilter.setLowpass(1, 4500, .7071);
#endif
}
void OnControlChange(byte channel, byte control, byte value) {
@ -101,13 +114,13 @@ void loop() {
// each MIDI messages arrives, it return true. The message must
// be fully processed before usbMIDI.read() is called again.
if (loopCount % 524288 == 0) {
if (timer > 1000) {
timer = 0;
Serial.print("Processor Usage, Total: "); Serial.print(AudioProcessorUsage());
Serial.print("% ");
Serial.print(" tremolo: "); Serial.print(tremolo.processorUsage());
Serial.println("%");
}
loopCount++;
// check for new MIDI from USB
if (usbMIDI.read()) {

@ -8,11 +8,12 @@
* This example demonstrates teh BAAudioEffectsTremolo effect. It can
* be controlled using the Blackaddr Audio "Expansion Control Board".
*
* POT1 (left) controls amount of delay
* POT2 (right) controls amount of feedback
* POT3 (center) controls the wet/dry mix
* POT1 (left) controls the tremolo RATE
* POT2 (right) controls the tremolo DEPTH
* POT3 (center) controls the output VOLUME
* SW1 will enable/bypass the audio effect. LED1 will be on when effect is enabled.
* SW2 will cycle through the 3 pre-programmed analog filters. LED2 will be on when SW2 is pressed.
* SW2 will cycle through the 3 pre-programmed waveforms. NOTE: any waveform other than Sine will cause
* pops/clicks since the waveforms are not bandlimited.
*
*
* Using the Serial Montitor, send 'u' and 'd' characters to increase or decrease
@ -25,20 +26,27 @@
using namespace BAEffects;
using namespace BALibrary;
//#define USE_CAB_FILTER // uncomment this line to add a simple low-pass filter to simulate a cabinet if you are going straight to headphones
AudioInputI2S i2sIn;
AudioOutputI2S i2sOut;
BAAudioControlWM8731 codec;
AudioEffectTremolo tremolo;
#if defined(USE_CAB_FILTER)
AudioFilterBiquad cabFilter; // We'll want something to cut out the highs and smooth the tone, just like a guitar cab.
#endif
// Simply connect the input to the delay, and the output
// to both i2s channels
AudioConnection input(i2sIn,0, tremolo,0);
AudioConnection delayOut(tremolo, 0, cabFilter, 0);
#if defined(USE_CAB_FILTER)
AudioConnection tremOut(tremolo, 0, cabFilter, 0);
AudioConnection leftOut(cabFilter,0, i2sOut, 0);
AudioConnection rightOut(cabFilter,0, i2sOut, 1);
#else
AudioConnection leftOut(tremolo,0, i2sOut, 0);
AudioConnection rightOut(tremolo,0, i2sOut, 1);
#endif
//////////////////////////////////////////
@ -61,7 +69,8 @@ constexpr bool potSwapDirection = true;
// Blackaddr Audio Expansion Board.
BAPhysicalControls controls(BA_EXPAND_NUM_SW, BA_EXPAND_NUM_POT, BA_EXPAND_NUM_ENC, BA_EXPAND_NUM_LED);
int loopCount = 0;
elapsedMillis timer;
unsigned waveformIndex = 0; // variable for storing which analog filter we're currently using.
constexpr unsigned MAX_HEADPHONE_VOL = 10;
unsigned headphoneVolume = 8; // control headphone volume from 0 to 10.
@ -70,12 +79,14 @@ unsigned headphoneVolume = 8; // control headphone volume from 0 to 10.
int bypassHandle, waveformHandle, rateHandle, depthHandle, volumeHandle, led1Handle, led2Handle; // Handles for the various controls
void setup() {
TGA_PRO_MKII_REV1(); // Declare the version of the TGA Pro you are using.
//TGA_PRO_REVB(x);
//TGA_PRO_REVA(x);
delay(100); // wait a bit for serial to be available
Serial.begin(57600); // Start the serial port
delay(100);
TGA_PRO_EXPAND_REV2(); // Configure the expansion board revision
// Setup the controls. The return value is the handle to use when checking for control changes, etc.
// pushbuttons
bypassHandle = controls.addSwitch(BA_EXPAND_SW1_PIN); // will be used for bypass control
@ -104,6 +115,7 @@ void setup() {
// Set some default values.
// These can be changed using the controls on the Blackaddr Audio Expansion Board
tremolo.bypass(false);
controls.setOutput(led1Handle, !tremolo.isBypass()); // Set the LED when NOT bypassed
tremolo.rate(0.0f);
tremolo.depth(1.0f);
@ -112,9 +124,11 @@ void setup() {
// These are commented out, in this example we'll use SW2 to cycle through the different filters
//tremolo.setWaveform(Waveform::SINE); // The default waveform
#if defined(USE_CAB_FILTER)
// Guitar cabinet: Setup 2-stages of LPF, cutoff 4500 Hz, Q-factor 0.7071 (a 'normal' Q-factor)
cabFilter.setLowpass(0, 4500, .7071);
cabFilter.setLowpass(1, 4500, .7071);
#endif
}
void loop() {
@ -178,15 +192,14 @@ void loop() {
}
}
// Use the loopCounter to roughly measure human timescales. Every few seconds, print the CPU usage
// to the serial port. About 500,000 loops!
//if (loopCount % 524288 == 0) {
if (loopCount % 25000 == 0) {
delay(20); // Without some minimal delay here it will be difficult for the pots/switch changes to be detected.
if (timer > 1000) {
timer = 0;
Serial.print("Processor Usage, Total: "); Serial.print(AudioProcessorUsage());
Serial.print("% ");
Serial.print(" tremolo: "); Serial.print(tremolo.processorUsage());
Serial.println("%");
}
loopCount++;
}

@ -15,6 +15,8 @@
* be useful for frequency detection but is not appropriate for when sound quality is desired as
* the modulation of the filter will result in audible artifacts.
*
* ALLOW THE TEST TO RUN THROUGH SEVERAL CYCLE of toggling the HPF so the CODEC can calibrate correctly.
*
*/
#include <Wire.h>
#include <Audio.h>
@ -39,6 +41,9 @@ AudioConnection patchOutL(rmsModule, 0, i2sOut, 0); // connect the cab filt
AudioConnection patchOutR(rmsModule, 0, i2sOut, 1); // connect the cab filter to the output.
void setup() {
TGA_PRO_MKII_REV1(); // Declare the version of the TGA Pro you are using.
//TGA_PRO_REVB(x);
//TGA_PRO_REVA(x);
delay(5); // wait a few ms to make sure the GTA Pro is fully powered up
AudioMemory(48);

@ -1,80 +0,0 @@
#include "BALibrary.h"
using namespace BALibrary;
constexpr int potCalibMin = 8;
constexpr int potCalibMax = 1016;
constexpr bool potSwapDirection = true;
int pot1Handle, pot2Handle, pot3Handle, sw1Handle, sw2Handle, led1Handle, led2Handle;
bool mute = false;
BAAudioControlWM8731 *codecPtr = nullptr;
BAPhysicalControls *controlPtr = nullptr;
void configPhysicalControls(BAPhysicalControls &controls, BAAudioControlWM8731 &codec)
{
// Setup the controls. The return value is the handle to use when checking for control changes, etc.
// pushbuttons
sw1Handle = controls.addSwitch(BA_EXPAND_SW1_PIN);
sw2Handle = controls.addSwitch(BA_EXPAND_SW2_PIN);
// pots
pot1Handle = controls.addPot(BA_EXPAND_POT1_PIN, potCalibMin, potCalibMax, potSwapDirection);
pot2Handle = controls.addPot(BA_EXPAND_POT2_PIN, potCalibMin, potCalibMax, potSwapDirection);
pot3Handle = controls.addPot(BA_EXPAND_POT3_PIN, potCalibMin, potCalibMax, potSwapDirection);
// leds
led1Handle = controls.addOutput(BA_EXPAND_LED1_PIN);
led2Handle = controls.addOutput(BA_EXPAND_LED2_PIN); // will illuminate when pressing SW2
controlPtr = &controls;
codecPtr = &codec;
}
void checkPot(unsigned id)
{
float potValue;
unsigned handle;
switch(id) {
case 0 :
handle = pot1Handle;
break;
case 1 :
handle = pot2Handle;
break;
case 2 :
handle = pot3Handle;
break;
default :
handle = pot1Handle;
}
if (controlPtr->checkPotValue(handle, potValue)) {
// Pot has changed
codecPtr->setHeadphoneVolume(potValue);
Serial.println(String("POT") + id + String(" value: ") + potValue);
}
}
void checkSwitch(unsigned id)
{
unsigned swHandle;
unsigned ledHandle;
switch(id) {
case 0 :
swHandle = sw1Handle;
ledHandle = led1Handle;
break;
case 1 :
swHandle = sw2Handle;
ledHandle = led2Handle;
break;
default :
swHandle = sw1Handle;
ledHandle = led1Handle;
}
if (controlPtr->isSwitchToggled(swHandle)) {
Serial.println(String("Button ") + id + String(" pressed"));
}
bool pressed = controlPtr->isSwitchHeld(swHandle);
controlPtr->setOutput(ledHandle, pressed);
}

@ -1,140 +0,0 @@
/*************************************************************************
* This demo is used for manufacturing testing on the TGA Pro Expansion
* Control Board.
*
* This will test the following on the TGA Pro:
*
* - Audio INPUT and OUTPUT JACKS
* - Midi INPUT and Midi OUTPUT jacks
* - MEM0 (if installed)
* - MEM1 (if installed)
* - User LED
*
* This will also test the Expansion Control Board (if installed):
*
* - three POT knobs
* - two pushbutton SWitches
* - two LEDs
* - headphone output
*
* SETUP INSTRUCTIONS:
*
* 1) Connect an audio source to AUDIO INPUT.
* 2) Connect AUDIO OUTPUT to amp, stereo, headphone amplifier, etc.
* 3) if testing the MIDI ports, connect a MIDI cable between MIDI INPUT and MIDI OUTPUT
* 4) comment out any tests you want to skip
* 5) Compile and run the demo on your Teensy with TGA Pro.
* 6) Launch the Arduino Serial Monitor to see results.
*
* TESTING INSTRUCTIONS:
*
* 1) Check the Serial Monitor for the results of the MIDI testing, and external memory testing.
* 2) Confirm that the audio sent to the INPUT is coming out the OUTPUT.
* 3) Confirm the User LED is blinking every 1 or 2 seconds
*
* If using the Expansion Control Board:
*
* 1) Try pushing the pushbuttons. When pushed, they should turn on their corresponding LED.
* 2) Try turn each of the knobs one at a time. They should adjust the volume.
*
* The latest copy of the BA Guitar library can be obtained from
* https://github.com/Blackaddr/BALibrary
*
*/
#define RUN_MIDI_TEST // Uncomment this line to run the MIDI test.
#define RUN_MEMO_TEST // Uncomment this line to run the MEM0 test.
//#define RUN_MEM1_TEST // (Teensy 3.5/3/6 only!) Uncomment this line to run the MEM1 test.
#define RUN_EXP_TEST // Test the Expansion board controls
#include <Audio.h>
#include "BALibrary.h"
using namespace BALibrary;
AudioInputI2S i2sIn;
AudioOutputI2S i2sOut;
// Audio Thru Connection
AudioConnection patch0(i2sIn,0, i2sOut, 0);
AudioConnection patch1(i2sIn,1, i2sOut, 1);
BAAudioControlWM8731 codec;
BAGpio gpio; // access to User LED
#if defined(RUN_MEMO_TEST)
BASpiMemoryDMA spiMem0(SpiDeviceId::SPI_DEVICE0);
#endif
#if defined(RUN_MEM1_TEST) && !defined(__IMXRT1062__) // SPI1 not supported on T4.0
BASpiMemoryDMA spiMem1(SpiDeviceId::SPI_DEVICE1);
#endif
// Create a control object using the number of switches, pots, encoders and outputs on the
// Blackaddr Audio Expansion Board.
BAPhysicalControls controls(BA_EXPAND_NUM_SW, BA_EXPAND_NUM_POT, BA_EXPAND_NUM_ENC, BA_EXPAND_NUM_LED);
void configPhysicalControls(BAPhysicalControls &controls, BAAudioControlWM8731 &codec);
void checkPot(unsigned id);
void checkSwitch(unsigned id);
bool spiTest(BASpiMemory *mem, int id); // returns true if passed
bool uartTest(); // returns true if passed
unsigned loopCounter = 0;
void setup() {
Serial.begin(57600);
//while (!Serial) { yield(); }
delay(500);
// Disable the audio codec first
codec.disable();
delay(100);
AudioMemory(128);
codec.enable();
codec.setHeadphoneVolume(0.8f); // Set headphone volume
configPhysicalControls(controls, codec);
TGA_PRO_MKII_REV1();
TGA_PRO_EXPAND_REV3(); // Macro to declare expansion board revision
// Run the initial Midi connectivity and SPI memory tests.
#if defined(RUN_MIDI_TEST)
if (uartTest()) { Serial.println("MIDI Ports testing PASSED!"); }
#endif
#if defined(RUN_MEMO_TEST)
//SPI_MEM0_1M();
SPI_MEM0_4M();
spiMem0.begin(); delay(10);
if (spiTest(&spiMem0, 0)) { Serial.println("SPI0 testing PASSED!");}
#endif
#if defined(RUN_MEM1_TEST) && !defined(__IMXRT1062__)
SPI_MEM1_1M();
//SPI_MEM1_4M();
spiMem1.begin(); delay(10);
if (spiTest(&spiMem1, 1)) { Serial.println("SPI1 testing PASSED!");}
#endif
#if defined(RUN_EXP_TEST)
Serial.println("Now monitoring for input from Expansion Control Board");
#endif
}
void loop() {
#if defined(RUN_EXP_TEST)
checkPot(0);
checkPot(1);
checkPot(2);
checkSwitch(0);
checkSwitch(1);
#endif
delay(20);
loopCounter++;
if ((loopCounter % 100) == 0) {
gpio.toggleLed();
}
}

@ -1,81 +0,0 @@
#include "BAHardware.h"
#include "BASpiMemory.h"
using namespace BALibrary;
constexpr unsigned MIDI_RATE = 31250;
constexpr unsigned HIGH_RATE = 230400;
constexpr unsigned TEST_TIME = 5; // 5 second test each
static unsigned baudRate = MIDI_RATE; // start with low speed
static uint8_t writeData = 0;
static unsigned loopCounter = 0;
static unsigned errorCount = 0;
static bool testFailed = false;
static bool testDone = false;
static unsigned testPhase = 0; // 0 for MIDI speed, 1 for high speed.
bool uartTest(void)
{
Serial1.begin(baudRate, SERIAL_8N1);
delay(100);
while(!Serial) {}
Serial.println(String("\nRunning MIDI Port speed test at ") + baudRate);
// write the first data
Serial1.write(writeData);
while(!testFailed && !testDone) {
if (loopCounter >= (baudRate/4)) { // the divisor determines how long the test runs for
// next test
switch (testPhase) {
case 0 :
baudRate = HIGH_RATE;
break;
case 1 :
testDone = true;
}
if (errorCount == 0) { Serial.println("TEST PASSED!"); }
else {
Serial.println("MIDI PORT TEST FAILED!");
}
errorCount = 0;
testPhase++;
loopCounter = 0;
if (!testDone) {
Serial.println(String("\nRunning MIDI Port speed test at ") + baudRate);
Serial1.begin(baudRate, SERIAL_8N1);
while (!Serial1) {} // wait for serial to be ready
} else {
Serial.println("MIDI PORT TEST DONE!\n");
}
}
// Wait for read data
if (Serial1.available()) {
uint8_t readData= Serial1.read();
if (readData != writeData) {
Serial.println(String("MIDI ERROR: readData = ") + readData + String(" writeData = ") + writeData);
errorCount++;
}
if ((loopCounter % (baudRate/64)) == 0) { // the divisor determines how often the period is printed
Serial.print("."); Serial.flush();
}
if (errorCount > 16) {
Serial.println("Halting test");
testFailed = true;
}
loopCounter++;
writeData++;
Serial1.write(writeData);
}
}
return testFailed;
}

@ -1,129 +0,0 @@
#include <cstddef>
#include <cstdint>
#include "BAHardware.h"
#include "BASpiMemory.h"
constexpr int NUM_TESTS = 12;
constexpr int NUM_BLOCK_WORDS = 128;
constexpr int mask0 = 0x5555;
constexpr int mask1 = 0xaaaa;
//#define SANITY_CHECK
using namespace BALibrary;
int SPI_MAX_ADDR = 0;
int calcData(int spiAddress, int loopPhase, int maskPhase)
{
int data;
int phase = ((loopPhase << 1) + maskPhase) & 0x3;
switch(phase)
{
case 0 :
data = spiAddress ^ mask0;
break;
case 1:
data = spiAddress ^ mask1;
break;
case 2:
data = ~spiAddress ^ mask0;
break;
case 3:
data = ~spiAddress ^ mask1;
}
return (data & 0xffff);
}
bool spiTest(BASpiMemory *mem, int id)
{
int spiAddress = 0;
int spiErrorCount = 0;
int maskPhase = 0;
int loopPhase = 0;
uint16_t memBlock[NUM_BLOCK_WORDS];
uint16_t goldData[NUM_BLOCK_WORDS];
SPI_MAX_ADDR = BAHardwareConfig.getSpiMemMaxAddr(0); // assume for this test both memories are the same size so use MEM0
const size_t SPI_MEM_SIZE_BYTES = BAHardwareConfig.getSpiMemSizeBytes(id);
Serial.println(String("Starting SPI MEM Test of ") + SPI_MEM_SIZE_BYTES + String(" bytes"));
for (int cnt = 0; cnt < NUM_TESTS; cnt++) {
// Zero check
mem->zero16(0, SPI_MEM_SIZE_BYTES / sizeof(uint16_t));
while (mem->isWriteBusy()) {}
for (spiAddress = 0; spiAddress <= SPI_MAX_ADDR; spiAddress += NUM_BLOCK_WORDS*sizeof(uint16_t)) {
mem->read16(spiAddress, memBlock, NUM_BLOCK_WORDS);
while (mem->isReadBusy()) {}
for (int i=0; i<NUM_BLOCK_WORDS; i++) {
if (memBlock[i] != 0) {
spiErrorCount++;
if (spiErrorCount >= 10) break;
}
}
if (spiErrorCount >= 10) break;
}
//if (spiErrorCount == 0) { Serial.println(String("SPI MEMORY(") + cnt + String("): Zero test PASSED!")); }
if (spiErrorCount == 0) { Serial.print("."); Serial.flush(); }
if (spiErrorCount > 0) { Serial.println(String("SPI MEMORY(") + cnt + String("): Zero test FAILED, error count = ") + spiErrorCount); return false;}
// Write all test data to the memory
maskPhase = 0;
for (spiAddress = 0; spiAddress <= SPI_MAX_ADDR; spiAddress += NUM_BLOCK_WORDS*sizeof(uint16_t)) {
// Calculate the data for a block
for (int i=0; i<NUM_BLOCK_WORDS; i++) {
memBlock[i] = calcData(spiAddress+i, loopPhase, maskPhase);
maskPhase = (maskPhase+1) % 2;
}
mem->write16(spiAddress, memBlock, NUM_BLOCK_WORDS);
while (mem->isWriteBusy()) {}
}
// Read back the test data
spiErrorCount = 0;
spiAddress = 0;
maskPhase = 0;
for (spiAddress = 0; spiAddress <= SPI_MAX_ADDR; spiAddress += NUM_BLOCK_WORDS*sizeof(uint16_t)) {
mem->read16(spiAddress, memBlock, NUM_BLOCK_WORDS);
// Calculate the golden data for a block
for (int i=0; i<NUM_BLOCK_WORDS; i++) {
goldData[i] = calcData(spiAddress+i, loopPhase, maskPhase);
maskPhase = (maskPhase+1) % 2;
}
while (mem->isReadBusy()) {} // wait for the read to finish
for (int i=0; i<NUM_BLOCK_WORDS; i++) {
if (goldData[i] != memBlock[i]) {
Serial.println(String("ERROR@ ") + i + String(": ") + goldData[i] + String("!=") + memBlock[i]);
spiErrorCount++;
if (spiErrorCount >= 10) break;
}
#ifdef SANITY_CHECK
else {
if ((spiAddress == 0) && (i<10) && (cnt == 0) ){
Serial.println(String("SHOW@ ") + i + String(": ") + goldData[i] + String("==") + memBlock[i]);
}
}
#endif
}
if (spiErrorCount >= 10) break;
}
//if (spiErrorCount == 0) { Serial.println(String("SPI MEMORY(") + cnt + String("): Data test PASSED!")); }
if (spiErrorCount == 0) { Serial.print("."); Serial.flush(); }
if (spiErrorCount > 0) { Serial.println(String("SPI MEMORY(") + cnt + String("): Data test FAILED, error count = ") + spiErrorCount); return false;}
loopPhase = (loopPhase+1) % 2;
}
return true;
}

@ -36,7 +36,9 @@ AudioEffectAnalogDelay::AudioEffectAnalogDelay(ExtMemSlot *slot)
: AudioStream(1, m_inputQueueArray)
{
m_memory = new AudioDelay(slot);
m_maxDelaySamples = (slot->size() / sizeof(int16_t));
// the delay cannot be exactly equal to the slot size, you need at least one sample so the wr/rd are not on top of each other.
m_maxDelaySamples = (slot->size() / sizeof(int16_t))-AUDIO_BLOCK_SAMPLES;
m_externalMemory = true;
m_constructFilter();
}
@ -164,21 +166,17 @@ void AudioEffectAnalogDelay::delay(float milliseconds)
{
size_t delaySamples = calcAudioSamples(milliseconds);
if (delaySamples > m_memory->getMaxDelaySamples()) {
// this exceeds max delay value, limit it.
delaySamples = m_memory->getMaxDelaySamples();
}
if (!m_memory) { Serial.println("delay(): m_memory is not valid"); }
if (!m_memory) { Serial.println("delay(): m_memory is not valid"); return; }
if (!m_externalMemory) {
// internal memory
m_maxDelaySamples = m_memory->getMaxDelaySamples();
//QueuePosition queuePosition = calcQueuePosition(milliseconds);
//Serial.println(String("CONFIG: delay:") + delaySamples + String(" queue position ") + queuePosition.index + String(":") + queuePosition.offset);
} else {
// external memory
//Serial.println(String("CONFIG: delay:") + delaySamples);
ExtMemSlot *slot = m_memory->getSlot();
m_maxDelaySamples = (slot->size() / sizeof(int16_t))-AUDIO_BLOCK_SAMPLES;
if (!slot) { Serial.println("ERROR: slot ptr is not valid"); }
if (!slot->isEnabled()) {
@ -187,6 +185,10 @@ void AudioEffectAnalogDelay::delay(float milliseconds)
}
}
if (delaySamples > m_maxDelaySamples) {
// this exceeds max delay value, limit it.
delaySamples = m_maxDelaySamples;
}
m_delaySamples = delaySamples;
}
@ -196,43 +198,52 @@ void AudioEffectAnalogDelay::delay(size_t delaySamples)
if (!m_externalMemory) {
// internal memory
m_maxDelaySamples = m_memory->getMaxDelaySamples();
//QueuePosition queuePosition = calcQueuePosition(delaySamples);
//Serial.println(String("CONFIG: delay:") + delaySamples + String(" queue position ") + queuePosition.index + String(":") + queuePosition.offset);
} else {
// external memory
//Serial.println(String("CONFIG: delay:") + delaySamples);
ExtMemSlot *slot = m_memory->getSlot();
m_maxDelaySamples = (slot->size() / sizeof(int16_t))-AUDIO_BLOCK_SAMPLES;
if (!slot->isEnabled()) {
slot->enable();
}
}
m_delaySamples = delaySamples;
if (delaySamples > m_maxDelaySamples) {
// this exceeds max delay value, limit it.
delaySamples = m_maxDelaySamples;
}
m_delaySamples = delaySamples;
}
void AudioEffectAnalogDelay::delayFractionMax(float delayFraction)
{
size_t delaySamples = static_cast<size_t>(static_cast<float>(m_memory->getMaxDelaySamples()) * delayFraction);
if (delaySamples > m_memory->getMaxDelaySamples()) {
// this exceeds max delay value, limit it.
delaySamples = m_memory->getMaxDelaySamples();
}
if (!m_memory) { Serial.println("delay(): m_memory is not valid"); }
if (!m_externalMemory) {
// internal memory
m_maxDelaySamples = m_memory->getMaxDelaySamples();
//QueuePosition queuePosition = calcQueuePosition(delaySamples);
//Serial.println(String("CONFIG: delay:") + delaySamples + String(" queue position ") + queuePosition.index + String(":") + queuePosition.offset);
} else {
// external memory
//Serial.println(String("CONFIG: delay:") + delaySamples);
ExtMemSlot *slot = m_memory->getSlot();
m_maxDelaySamples = (slot->size() / sizeof(int16_t))-AUDIO_BLOCK_SAMPLES;
if (!slot->isEnabled()) {
slot->enable();
}
}
m_delaySamples = delaySamples;
if (delaySamples > m_maxDelaySamples) {
// this exceeds max delay value, limit it.
delaySamples = m_maxDelaySamples;
}
m_delaySamples = delaySamples;
}
void AudioEffectAnalogDelay::m_preProcessing(audio_block_t *out, audio_block_t *dry, audio_block_t *wet)
@ -270,8 +281,8 @@ void AudioEffectAnalogDelay::processMidi(int channel, int control, int value)
if ((m_midiConfig[DELAY][MIDI_CHANNEL] == channel) &&
(m_midiConfig[DELAY][MIDI_CONTROL] == control)) {
// Delay
if (m_externalMemory) { m_maxDelaySamples = m_memory->getSlot()->size() / sizeof(int16_t); }
size_t delayVal = (size_t)(val * (float)m_maxDelaySamples);
if (m_externalMemory) { m_maxDelaySamples = (m_memory->getSlot()->size() / sizeof(int16_t))-AUDIO_BLOCK_SAMPLES; }
size_t delayVal = (size_t)(val * (float)(m_maxDelaySamples));
delay(delayVal);
Serial.println(String("AudioEffectAnalogDelay::delay (ms): ") + calcAudioTimeMs(delayVal)
+ String(" (samples): ") + delayVal + String(" out of ") + m_maxDelaySamples);

Loading…
Cancel
Save