/*! * @file uClock.cpp * Project BPM clock generator for Arduino * @brief A Library to implement BPM clock tick calls using hardware interruption. Supported and tested on AVR boards(ATmega168/328, ATmega16u4/32u4 and ATmega2560) and ARM boards(RPI2040, Teensy, Seedstudio XIAO M0 and ESP32) * @version 2.2.0 * @author Romulo Silva * @date 10/06/2017 * @license MIT - (c) 2024 - Romulo Silva - contact@midilab.co * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include "uClock.h" // // General Arduino AVRs port // #if defined(ARDUINO_ARCH_AVR) #include "platforms/avr.h" #endif // // Teensyduino ARMs port // #if defined(TEENSYDUINO) #include "platforms/teensy.h" #endif // // Seedstudio XIAO M0 port // #if defined(SEEED_XIAO_M0) #include "platforms/samd.h" #endif // // ESP32 family // #if defined(ARDUINO_ARCH_ESP32) || defined(ESP32) #include "platforms/esp32.h" #endif // // STM32XX family // #if defined(ARDUINO_ARCH_STM32) #include "platforms/stm32.h" #endif // // RP2040 (Raspberry Pico) family // #if defined(ARDUINO_ARCH_RP2040) #include "platforms/rp2040.h" #endif // // Platform specific timer setup/control // // initTimer(uint32_t us_interval) and setTimer(uint32_t us_interval) // are called from architecture specific module included at the // header of this file void uclockInitTimer() { // begin at 120bpm initTimer(uClock.bpmToMicroSeconds(120.00)); } void setTimerTempo(float bpm) { setTimer(uClock.bpmToMicroSeconds(bpm)); } namespace umodular { namespace clock { static inline uint32_t phase_mult(uint32_t val) { return (val * PHASE_FACTOR) >> 8; } static inline uint32_t clock_diff(uint32_t old_clock, uint32_t new_clock) { if (new_clock >= old_clock) { return new_clock - old_clock; } else { return new_clock + (4294967295 - old_clock); } } uClockClass::uClockClass() { tempo = 120; start_timer = 0; last_interval = 0; sync_interval = 0; state = PAUSED; mode = INTERNAL_CLOCK; resetCounters(); onPPQNCallback = nullptr; onSync24Callback = nullptr; onStepCallback = nullptr; onTrackStepCallback = nullptr; onClockStartCallback = nullptr; onClockStopCallback = nullptr; // first ppqn references calculus setPPQN(PPQN_96); } void uClockClass::init() { uclockInitTimer(); // first interval calculus setTempo(tempo); } uint32_t uClockClass::bpmToMicroSeconds(float bpm) { return (60000000 / ppqn / bpm); } void uClockClass::setPPQN(PPQNResolution resolution) { // stop clock to make it safe changing those references // so we avoid volatile then and ATOMIC everyone stop(); ppqn = resolution; // calculate the mod24 and mod_step tick reference trigger mod24_ref = ppqn / 24; mod_step_ref = ppqn / 4; } void uClockClass::start() { resetCounters(); start_timer = millis(); if (onClockStartCallback) { onClockStartCallback(); } if (mode == INTERNAL_CLOCK) { state = STARTED; } else { state = STARTING; } } void uClockClass::stop() { state = PAUSED; start_timer = 0; resetCounters(); if (onClockStopCallback) { onClockStopCallback(); } } void uClockClass::pause() { if (mode == INTERNAL_CLOCK) { if (state == PAUSED) { start(); } else { stop(); } } } void uClockClass::setTempo(float bpm) { if (mode == EXTERNAL_CLOCK) { return; } if (bpm < MIN_BPM || bpm > MAX_BPM) { return; } ATOMIC( tempo = bpm ) setTimerTempo(bpm); } // this function is based on sync24PPQN float inline uClockClass::freqToBpm(uint32_t freq) { float usecs = 1/((float)freq/1000000.0); return (float)((float)(usecs/(float)24) * 60.0); } float uClockClass::getTempo() { if (mode == EXTERNAL_CLOCK) { uint32_t acc = 0; // wait the buffer to get full if (ext_interval_buffer[EXT_INTERVAL_BUFFER_SIZE-1] == 0) { return tempo; } for (uint8_t i=0; i < EXT_INTERVAL_BUFFER_SIZE; i++) { acc += ext_interval_buffer[i]; } if (acc != 0) { return freqToBpm(acc / EXT_INTERVAL_BUFFER_SIZE); } } return tempo; } void uClockClass::setMode(SyncMode tempo_mode) { mode = tempo_mode; } uClockClass::SyncMode uClockClass::getMode() { return mode; } void uClockClass::clockMe() { if (mode == EXTERNAL_CLOCK) { ATOMIC( handleExternalClock() ) } } void uClockClass::resetCounters() { tick = 0; int_clock_tick = 0; mod24_counter = 0; mod_step_counter = 0; step_counter = 0; ext_clock_tick = 0; ext_clock_us = 0; ext_interval_idx = 0; for (uint32_t t=0; t < MAX_TRACKS; t++) { mod_track_step_counter[t] = 0; track_step_counter[t] = 0; } for (uint8_t i=0; i < EXT_INTERVAL_BUFFER_SIZE; i++) { ext_interval_buffer[i] = 0; } } // TODO: Tap stuff void uClockClass::tap() { // tap me } void uClockClass::setShuffle(bool active) { ATOMIC(shuffle.active = active) } void uClockClass::setTrackShuffle(uint8_t track, bool active) { ATOMIC(track_shuffles[track].shuffle.active = active) } bool uClockClass::isShuffled() { return shuffle.active; } bool uClockClass::isTrackShuffled(uint8_t track) { return track_shuffles[track].shuffle.active; } void uClockClass::setShuffleSize(uint8_t size) { if (size > MAX_SHUFFLE_TEMPLATE_SIZE) size = MAX_SHUFFLE_TEMPLATE_SIZE; ATOMIC(shuffle.size = size) } void uClockClass::setTrackShuffleSize(uint8_t track, uint8_t size) { if (size > MAX_SHUFFLE_TEMPLATE_SIZE) size = MAX_SHUFFLE_TEMPLATE_SIZE; ATOMIC(track_shuffles[track].shuffle.size = size) } void uClockClass::setShuffleData(uint8_t step, int8_t tick) { if (step >= MAX_SHUFFLE_TEMPLATE_SIZE) return; ATOMIC(shuffle.step[step] = tick) } void uClockClass::setTrackShuffleData(uint8_t track, uint8_t step, int8_t tick) { if (step >= MAX_SHUFFLE_TEMPLATE_SIZE) return; ATOMIC(track_shuffles[track].shuffle.step[step] = tick) } void uClockClass::setShuffleTemplate(int8_t * shuff, uint8_t size) { //uint8_t size = sizeof(shuff) / sizeof(shuff[0]); if (size > MAX_SHUFFLE_TEMPLATE_SIZE) size = MAX_SHUFFLE_TEMPLATE_SIZE; ATOMIC(shuffle.size = size) for (uint8_t i=0; i < size; i++) { setShuffleData(i, shuff[i]); } } void uClockClass::setTrackShuffleTemplate(uint8_t track, int8_t * shuff, uint8_t size) { //uint8_t size = sizeof(shuff) / sizeof(shuff[0]); if (size > MAX_SHUFFLE_TEMPLATE_SIZE) size = MAX_SHUFFLE_TEMPLATE_SIZE; ATOMIC(track_shuffles[track].shuffle.size = size) for (uint8_t i=0; i < size; i++) { setTrackShuffleData(track, i, shuff[i]); } } int8_t uClockClass::getShuffleLength() { return shuffle_length_ctrl; } int8_t uClockClass::getTrackShuffleLength(uint8_t track) { return track_shuffles[track].shuffle_length_ctrl; } bool inline uClockClass::processShuffle() { if (!shuffle.active) { return mod_step_counter == 0; } int8_t mod_shuffle = 0; // check shuffle template of current int8_t shff = shuffle.step[step_counter%shuffle.size]; if (shuffle_shoot_ctrl == false && mod_step_counter == 0) shuffle_shoot_ctrl = true; //if (mod_step_counter == mod_step_ref-1) if (shff >= 0) { mod_shuffle = mod_step_counter - shff; // any late shuffle? we should skip next mod_step_counter == 0 if (last_shff < 0 && mod_step_counter != 1) { if (shuffle_shoot_ctrl == true) shuffle_shoot_ctrl = false; return false; } } else if (shff < 0) { mod_shuffle = mod_step_counter - (mod_step_ref + shff); //if (last_shff < 0 && mod_step_counter != 1) // return false; shuffle_shoot_ctrl = true; } last_shff = shff; // shuffle_shoot_ctrl helps keep track if we have shoot or not a note for the step space of ppqn/4 pulses if (mod_shuffle == 0 && shuffle_shoot_ctrl == true) { // keep track of next note shuffle for current note lenght control shuffle_length_ctrl = shuffle.step[(step_counter+1)%shuffle.size]; if (shff > 0) shuffle_length_ctrl -= shff; if (shff < 0) shuffle_length_ctrl += shff; shuffle_shoot_ctrl = false; return true; } return false; } bool inline uClockClass::processTrackShuffle(uint8_t track) { if (!track_shuffles[track].shuffle.active) { return mod_track_step_counter[track] == 0; } int8_t mod_shuffle = 0; // check shuffle template of current int8_t shff = track_shuffles[track].shuffle.step[track_step_counter[track]%track_shuffles[track].shuffle.size]; if (track_shuffles[track].shuffle_shoot_ctrl == false && mod_track_step_counter[track] == 0) track_shuffles[track].shuffle_shoot_ctrl = true; if (shff >= 0) { mod_shuffle = mod_track_step_counter[track] - shff; // any late shuffle? we should skip next mod_track_step_counter == 0 if (track_shuffles[track].last_shff < 0 && mod_track_step_counter[track] != 1) { if (track_shuffles[track].shuffle_shoot_ctrl == true) track_shuffles[track].shuffle_shoot_ctrl = false; return false; } } else if (shff < 0) { mod_shuffle = mod_track_step_counter[track] - (mod_step_ref + shff); track_shuffles[track].shuffle_shoot_ctrl = true; } track_shuffles[track].last_shff = shff; // shuffle_shoot_ctrl helps keep track if we have shoot or not a note for the step space of ppqn/4 pulses if (mod_shuffle == 0 && track_shuffles[track].shuffle_shoot_ctrl == true) { track_shuffles[track].shuffle_shoot_ctrl = false; // // keep track of next note shuffle for current note lenght control track_shuffles[track].shuffle_length_ctrl = track_shuffles[track].shuffle.step[(track_step_counter[track]+1)%track_shuffles[track].shuffle.size]; if (shff > 0) track_shuffles[track].shuffle_length_ctrl -= shff; if (shff < 0) track_shuffles[track].shuffle_length_ctrl += shff; return true; } return false; } // it is expected to be called in 24PPQN void uClockClass::handleExternalClock() { switch (state) { case PAUSED: break; case STARTING: state = STARTED; ext_clock_us = micros(); break; case STARTED: uint32_t now_clock_us = micros(); last_interval = clock_diff(ext_clock_us, now_clock_us); ext_clock_us = now_clock_us; // external clock tick me! ext_clock_tick++; // accumulate interval incomming ticks data for getTempo() smooth reads on slave mode if(++ext_interval_idx >= EXT_INTERVAL_BUFFER_SIZE) { ext_interval_idx = 0; } ext_interval_buffer[ext_interval_idx] = last_interval; if (ext_clock_tick == 1) { ext_interval = last_interval; } else { ext_interval = (((uint32_t)ext_interval * (uint32_t)PLL_X) + (uint32_t)(256 - PLL_X) * (uint32_t)last_interval) >> 8; } break; } } void uClockClass::handleTimerInt() { // reset mod24 counter reference ? if (mod24_counter == mod24_ref) mod24_counter = 0; // process sync signals first please... if (mod24_counter == 0) { if (mode == EXTERNAL_CLOCK) { // sync tick position with external tick clock if ((int_clock_tick < ext_clock_tick) || (int_clock_tick > (ext_clock_tick + 1))) { int_clock_tick = ext_clock_tick; tick = int_clock_tick * mod24_ref; mod24_counter = tick % mod24_ref; mod_step_counter = tick % mod_step_ref; } uint32_t counter = ext_interval; uint32_t now_clock_us = micros(); sync_interval = clock_diff(ext_clock_us, now_clock_us); if (int_clock_tick <= ext_clock_tick) { counter -= phase_mult(sync_interval); } else { if (counter > sync_interval) { counter += phase_mult(counter - sync_interval); } } // update internal clock timer frequency float bpm = freqToBpm(counter); if (bpm != tempo) { if (bpm >= MIN_BPM && bpm <= MAX_BPM) { tempo = bpm; setTimerTempo(bpm); } } } if (onSync24Callback) { onSync24Callback(int_clock_tick); } // internal clock tick me! sync24 tick too ++int_clock_tick; } // PPQNCallback time! if (onPPQNCallback) { onPPQNCallback(tick); } for (uint8_t tm = 0; tm < MAX_TRACKS; tm++) { // reset track step mod counter reference ? if (mod_track_step_counter[tm] == mod_step_ref) mod_track_step_counter[tm] = 0; } if (onTrackStepCallback) { for (uint8_t t = 0; t < MAX_TRACKS; t++) { if (processTrackShuffle(t)) { onTrackStepCallback(t, track_step_counter[t]); // going forward to the next step call ++track_step_counter[t]; } } } // reset step mod counter reference ? if (mod_step_counter == mod_step_ref) mod_step_counter = 0; // step callback to support 16th old school style sequencers // with builtin shuffle for this callback only if (onStepCallback) { // processShufle make use of mod_step_counter == 0 logic too if (processShuffle()) { onStepCallback(step_counter); // going forward to the next step call ++step_counter; } } // tick me! ++tick; // increment mod counters ++mod24_counter; ++mod_step_counter; for (uint8_t tsm = 0; tsm < MAX_TRACKS; tsm++) { ++mod_track_step_counter[tsm]; } } // elapsed time support uint8_t uClockClass::getNumberOfSeconds(uint32_t time) { if ( time == 0 ) { return time; } return ((_millis - time) / 1000) % SECS_PER_MIN; } uint8_t uClockClass::getNumberOfMinutes(uint32_t time) { if ( time == 0 ) { return time; } return (((_millis - time) / 1000) / SECS_PER_MIN) % SECS_PER_MIN; } uint8_t uClockClass::getNumberOfHours(uint32_t time) { if ( time == 0 ) { return time; } return (((_millis - time) / 1000) % SECS_PER_DAY) / SECS_PER_HOUR; } uint8_t uClockClass::getNumberOfDays(uint32_t time) { if ( time == 0 ) { return time; } return ((_millis - time) / 1000) / SECS_PER_DAY; } uint32_t uClockClass::getNowTimer() { return _millis; } uint32_t uClockClass::getPlayTime() { return start_timer; } } } // end namespace umodular::clock umodular::clock::uClockClass uClock; volatile uint32_t _millis = 0; // // TIMER HANDLER // #if defined(ARDUINO_ARCH_AVR) ISR(TIMER1_COMPA_vect) #else void uClockHandler() #endif { // global timer counter _millis = millis(); if (uClock.state == uClock.STARTED) { uClock.handleTimerInt(); } }