remove freertos support(unstable so far) and make interrupted version the default only. update main example

pull/33/head
midilab 7 months ago
parent e41fb3157a
commit 9d8865b024
  1. 94
      examples/RP2040ClockBlink/RP2040ClockBlink.ino
  2. 76
      examples/RP2040UsbUartMasterClock/RP2040UsbUartMasterClock.ino
  3. 37
      examples/RP2040UsbUartMasterClock/builtin_led.ino
  4. 110
      src/platforms/rp2040.h

@ -1,94 +0,0 @@
/* USB MIDI Sync Box - RP2040 example that just blinks LED
*
*
* This example code is in the public domain.
*
*/
//#define LED_BUILTIN PIN_LED_B
#include "Adafruit_TinyUSB.h"
#include <uClock.h>
#define ATOMIC(X) { uint32_t __interrupt_mask = save_and_disable_interrupts(); X; restore_interrupts(__interrupt_mask); }
uint8_t bpm_blink_timer = 1;
void handle_bpm_led(uint32_t tick)
{
// BPM led indicator
if ( !(tick % (96)) || (tick == 1) ) { // first compass step will flash longer
bpm_blink_timer = 8;
digitalWrite(LED_BUILTIN, LOW);
} else if ( !(tick % (24)) ) { // each quarter led on
bpm_blink_timer = 1;
digitalWrite(LED_BUILTIN, LOW);
} else if ( !(tick % bpm_blink_timer) ) { // get led off
digitalWrite(LED_BUILTIN, HIGH);
}
}
// Internal clock handlers
void onSync24Callback(uint32_t tick) {
handle_bpm_led(tick);
}
void onClockStart() {
//MIDI_USB.sendRealTime(midi::Start);
}
void onClockStop() {
//MIDI_USB.sendRealTime(midi::Stop);
}
void setup() {
/*#if defined(ARDUINO_ARCH_MBED) && defined(ARDUINO_ARCH_RP2040)
// Manual begin() is required on core without built-in support for TinyUSB such as mbed rp2040
TinyUSB_Device_Init(0);
#endif*/
//MIDI_USB.begin(MIDI_CHANNEL_OMNI);
// A led to count bpms
pinMode(LED_BUILTIN, OUTPUT);
/*digitalWrite(LED_BUILTIN, HIGH);
delay(500);
digitalWrite(LED_BUILTIN, LOW);
delay(500);
digitalWrite(LED_BUILTIN, HIGH);
delay(500);
digitalWrite(LED_BUILTIN, LOW);
delay(500);*/
Serial.begin(115200);
/*while (!Serial)
delay(1);*/
// Setup our clock system
// Inits the clock
uClock.init();
// Set the callback function for the clock output to send MIDI Sync message.
uClock.setOnSync24(onSync24Callback);
// Set the callback function for MIDI Start and Stop messages.
uClock.setOnClockStart(onClockStart);
uClock.setOnClockStop(onClockStop);
// Set the clock BPM to 126 BPM
uClock.setTempo(60);
// Starts the clock, tick-tac-tick-tac..
//Serial.println("about to uClock.start()..."); Serial.flush();
uClock.start();
//Serial.println("uClock.start()ed!"); Serial.flush();
}
uint32_t count = 0;
// Do it whatever to interface with Clock.stop(), Clock.start(), Clock.setTempo() and integrate your environment...
void loop() {
//MIDI_USB.read();
//count++;
//if (millis()%1000==0)
// ATOMIC(Serial.println("looped!"));
}

@ -1,95 +1,74 @@
/* USB MIDI Sync Box - example that also prints to serial and sends USB midi as well as blinking LED /*
* (usb part still needs testing to make sure it works!) * USB/Uart MIDI Sync Box
* *
* This example code is in the public domain. * This example code is in the public domain.
* *
*/ */
#include <Adafruit_TinyUSB.h> #include <Adafruit_TinyUSB.h>
#include <MIDI.h> #include <MIDI.h>
Adafruit_USBD_MIDI usb_midi;
MIDI_CREATE_INSTANCE(Adafruit_USBD_MIDI, usb_midi, MIDI_USB);
//MIDI_CREATE_INSTANCE(HardwareSerial, Serial1, MIDI);
#include <uClock.h> #include <uClock.h>
#define ATOMIC(X) { uint32_t __interrupt_mask = save_and_disable_interrupts(); X; restore_interrupts(__interrupt_mask); } // Instantiate the MIDI interfaces
//#define LED_BUILTIN PIN_LED_B Adafruit_USBD_MIDI usb_midi;
//#define WAIT_FOR_SERIAL MIDI_CREATE_INSTANCE(Adafruit_USBD_MIDI, usb_midi, MIDI_USB);
#define ENABLE_MULTICORE MIDI_CREATE_INSTANCE(HardwareSerial, Serial1, MIDI);
volatile uint32_t count = 0; // Do your rpi 2040 has a ws2812 RGB LED? set the pin!
// otherwise keep it commented for normal LED_BUILTIN led blinking
#define WS2812_BUILTIN_LED 16
uint8_t bpm_blink_timer = 1; uint8_t bpm_blink_timer = 1;
void handle_bpm_led(uint32_t tick) void handle_bpm_led(uint32_t tick)
{ {
// BPM led indicator // BPM led indicator
if ( !(tick % (96)) || (tick == 1) ) { // first compass step will flash longer if ( !(tick % (96)) || (tick == 1) ) { // first of 4 quarter pulse will flash longer
bpm_blink_timer = 8; bpm_blink_timer = 8;
digitalWrite(LED_BUILTIN, LOW); ledOn();
} else if ( !(tick % (24)) ) { // each quarter led on } else if ( !(tick % (24)) ) { // each quarter led on
bpm_blink_timer = 1; bpm_blink_timer = 1;
digitalWrite(LED_BUILTIN, LOW); ledOn();
} else if ( !(tick % bpm_blink_timer) ) { // get led off } else if ( !(tick % bpm_blink_timer) ) { // get led off
digitalWrite(LED_BUILTIN, HIGH); ledOff();
} }
} }
// Internal clock handlers // Internal clock handlers
void onSync24Callback(uint32_t tick) { void onSync24Callback(uint32_t tick) {
// Send MIDI_CLOCK to external gears // Send MIDI_CLOCK to external gears
MIDI.sendRealTime(midi::Clock);
MIDI_USB.sendRealTime(midi::Clock); MIDI_USB.sendRealTime(midi::Clock);
// blink tempo
handle_bpm_led(tick); handle_bpm_led(tick);
Serial.printf("ticked with %u\n", tick);
} }
void onClockStart() { void onClockStart() {
MIDI.sendRealTime(midi::Start);
MIDI_USB.sendRealTime(midi::Start); MIDI_USB.sendRealTime(midi::Start);
} }
void onClockStop() { void onClockStop() {
MIDI.sendRealTime(midi::Stop);
MIDI_USB.sendRealTime(midi::Stop); MIDI_USB.sendRealTime(midi::Stop);
} }
#ifdef ENABLE_MULTICORE
void setup1() {
}
void loop1() {
if (count%1000==0)
ATOMIC(Serial.println("loop1()!"); Serial.flush());
}
#endif
void setup() { void setup() {
#if defined(ARDUINO_ARCH_MBED) && defined(ARDUINO_ARCH_RP2040) #if defined(ARDUINO_ARCH_MBED) && defined(ARDUINO_ARCH_RP2040)
// Manual begin() is required on core without built-in support for TinyUSB such as mbed rp2040 // Manual begin() is required on core without built-in support for TinyUSB such as mbed rp2040
TinyUSB_Device_Init(0); TinyUSB_Device_Init(0);
#endif #endif
// Initialize USB midi stack
MIDI_USB.begin(MIDI_CHANNEL_OMNI); MIDI_USB.begin(MIDI_CHANNEL_OMNI);
// Initialize UART midi stack
MIDI.begin(MIDI_CHANNEL_OMNI);
// A led to count bpms // Initialize builtin led for clock timer blinking
pinMode(LED_BUILTIN, OUTPUT); initBlinkLed();
Serial.begin(115200);
#ifdef WAIT_FOR_SERIAL
while (!Serial)
delay(1);
#endif
// wait until device mounted
while( !TinyUSBDevice.mounted() ) {
Serial.println("waiting for usb..");
Serial.flush();
delay(1);
}
// Setup our clock system // Setup our clock system
// Inits the clock // Inits the clock
Serial.println("about to uClock.init()..."); Serial.flush();
uClock.init(); uClock.init();
// Set the callback function for the clock output to send MIDI Sync message. // Set the callback function for the clock output to send MIDI Sync message.
uClock.setOnSync24(onSync24Callback); uClock.setOnSync24(onSync24Callback);
@ -97,17 +76,14 @@ void setup() {
uClock.setOnClockStart(onClockStart); uClock.setOnClockStart(onClockStart);
uClock.setOnClockStop(onClockStop); uClock.setOnClockStop(onClockStop);
// Set the clock BPM to 126 BPM // Set the clock BPM to 126 BPM
uClock.setTempo(60); uClock.setTempo(126);
// Starts the clock, tick-tac-tick-tac.. // Starts the clock, tick-tac-tick-tac..
Serial.println("about to uClock.start()..."); Serial.flush();
uClock.start(); uClock.start();
ATOMIC(Serial.println("uClock.start()ed!"); Serial.flush();)
} }
// Do it whatever to interface with Clock.stop(), Clock.start(), Clock.setTempo() and integrate your environment... // Do it whatever to interface with Clock.stop(), Clock.start(), Clock.setTempo() and integrate your environment...
void loop() { void loop() {
// handle midi input?
MIDI.read();
MIDI_USB.read(); MIDI_USB.read();
count++;
if (millis()%1000==0)
ATOMIC(Serial.println("loop()!"); Serial.flush(););
} }

@ -0,0 +1,37 @@
#if defined(WS2812_BUILTIN_LED)
#include <Adafruit_NeoPixel.h>
#define NUMPIXELS 1
Adafruit_NeoPixel pixels(NUMPIXELS, WS2812_BUILTIN_LED, NEO_GRB + NEO_KHZ800);
#endif
// check the pinage for BUILTIN LED of your model in case LED_BUILTIN wont ligth up
// this is valid only if you're not using rgb version ws2812 (WS2812_BUILTIN_LED)
//#define LED_BUILTIN PIN_LED_B
void initBlinkLed() {
#if defined(WS2812_BUILTIN_LED)
// use adafruit neo pixel
pixels.begin();
#else
// normal led pin
pinMode(LED_BUILTIN, OUTPUT);
#endif
}
void ledOn() {
#if defined(WS2812_BUILTIN_LED)
pixels.setPixelColor(0, pixels.Color(0, 0, 20));
pixels.show(); // turn the LED on (HIGH is the voltage level)
#else
digitalWrite(LED_BUILTIN, LOW);
#endif
}
void ledOff() {
#if defined(WS2812_BUILTIN_LED)
pixels.setPixelColor(0, pixels.Color(0, 0, 0));
pixels.show();
#else
digitalWrite(LED_BUILTIN, HIGH);
#endif
}

@ -1,98 +1,30 @@
#include <Arduino.h> #include <Arduino.h>
#include "pico/sync.h" #include "pico/sync.h"
// todo: make this a build flag, so user can choose which method to use? // RPi-specific timer
#define MULTICORE struct repeating_timer timer;
#ifdef MULTICORE #define ATOMIC(X) { uint32_t __interrupt_mask = save_and_disable_interrupts(); X; restore_interrupts(__interrupt_mask); }
// use interrupt version -- works for 2 cores ie can run loop1() and loop() simultaneously as well as the clock callback?
// RPi-specific timer // forward declaration of uClockHandler
struct repeating_timer timer; void uClockHandler();
#define ATOMIC(X) { uint32_t __interrupt_mask = save_and_disable_interrupts(); X; restore_interrupts(__interrupt_mask); } // ISR handler -- called when tick happens
bool handlerISR(repeating_timer *timer)
{
uClockHandler();
// forward declaration of uClockHandler return true;
void uClockHandler(); }
// ISR handler -- called when tick happens void initTimer(uint32_t init_clock) {
bool handlerISR(repeating_timer *timer) // set up RPi interrupt timer
{ // todo: actually should be -init_clock so that timer is set to start init_clock us after last tick, instead of init_clock us after finished processing last tick!
uClockHandler(); add_repeating_timer_us(init_clock, &handlerISR, NULL, &timer);
}
return true; void setTimer(uint32_t us_interval) {
} cancel_repeating_timer(&timer);
// todo: actually should be -us_interval so that timer is set to start init_clock us after last tick, instead of init_clock us after finished processing last tick!
void initTimer(uint32_t init_clock) { add_repeating_timer_us(us_interval, &handlerISR, NULL, &timer);
// set up RPi interrupt timer }
// todo: actually should be -init_clock so that timer is set to start init_clock us after last tick, instead of init_clock us after finished processing last tick!
add_repeating_timer_us(init_clock, &handlerISR, NULL, &timer);
}
void setTimer(uint32_t us_interval) {
cancel_repeating_timer(&timer);
// todo: actually should be -us_interval so that timer is set to start init_clock us after last tick, instead of init_clock us after finished processing last tick!
add_repeating_timer_us(us_interval, &handlerISR, NULL, &timer);
}
#else
// use FreeRTOS scheduling/mutex version -- doesn't work (task starts but does not run) if using loop1() ie core 2
#include "FreeRTOS.h"
#include <task.h>
#include <semphr.h>
// RPi-specific timer
struct repeating_timer timer;
// FreeRTOS main clock task size in bytes
#define CLOCK_STACK_SIZE 5*1024 // adjust for your needs, a sequencer with heavy serial handling should be large in size
TaskHandle_t taskHandle;
// mutex to protect the shared resource
SemaphoreHandle_t _mutex;
// mutex control for task
#define ATOMIC(X) xSemaphoreTake(_mutex, portMAX_DELAY); X; xSemaphoreGive(_mutex);
// forward declaration of uClockHandler
void uClockHandler();
// ISR handler -- called when tick happens
bool handlerISR(repeating_timer *timer)
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
// Send a notification to task1
vTaskNotifyGiveFromISR(taskHandle, &xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
return true;
}
// task for user clock process
void clockTask(void *pvParameters)
{
while (1) {
// wait for a notification from ISR
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
uClockHandler();
}
}
void initTimer(uint32_t init_clock)
{
// initialize the mutex for shared resource access
_mutex = xSemaphoreCreateMutex();
// create the clockTask
xTaskCreate(clockTask, "clockTask", CLOCK_STACK_SIZE, NULL, 1, &taskHandle);
// set up RPi interrupt timer
// todo: actually should be -init_clock so that timer is set to start init_clock us after last tick, instead of init_clock us after finished processing last tick!
add_repeating_timer_us(init_clock, &handlerISR, NULL, &timer);
}
void setTimer(uint32_t us_interval) {
cancel_repeating_timer(&timer);
// todo: actually should be -us_interval so that timer is set to start init_clock us after last tick, instead of init_clock us after finished processing last tick!
add_repeating_timer_us(us_interval, &handlerISR, NULL, &timer);
}
#endif
Loading…
Cancel
Save