initial working proof-of-concept of rp2040 support

pull/33/head
doctea 9 months ago
parent de055fa68c
commit 53419fa89c
  1. 92
      examples/RP2040ClockBlink/RP2040ClockBlink.ino
  2. 96
      examples/RP2040UsbMasterMidiClock/RP2040UsbMasterMidiClock.ino
  3. 1
      src/platforms/esp32.h
  4. 57
      src/platforms/rp2040.h
  5. 6
      src/uClock.cpp

@ -0,0 +1,92 @@
/* USB MIDI Sync Box - RP2040 example that just blinks LED
*
*
* This example code is in the public domain.
*
*/
//#define LED_BUILTIN PIN_LED_B
#include "Adafruit_TinyUSB.h"
#include <uClock.h>
uint8_t bpm_blink_timer = 1;
void handle_bpm_led(uint32_t tick)
{
// BPM led indicator
if ( !(tick % (96)) || (tick == 1) ) { // first compass step will flash longer
bpm_blink_timer = 8;
digitalWrite(LED_BUILTIN, LOW);
} else if ( !(tick % (24)) ) { // each quarter led on
bpm_blink_timer = 1;
digitalWrite(LED_BUILTIN, LOW);
} else if ( !(tick % bpm_blink_timer) ) { // get led off
digitalWrite(LED_BUILTIN, HIGH);
}
}
// Internal clock handlers
void onSync24Callback(uint32_t tick) {
handle_bpm_led(tick);
}
void onClockStart() {
//MIDI_USB.sendRealTime(midi::Start);
}
void onClockStop() {
//MIDI_USB.sendRealTime(midi::Stop);
}
void setup() {
/*#if defined(ARDUINO_ARCH_MBED) && defined(ARDUINO_ARCH_RP2040)
// Manual begin() is required on core without built-in support for TinyUSB such as mbed rp2040
TinyUSB_Device_Init(0);
#endif*/
//MIDI_USB.begin(MIDI_CHANNEL_OMNI);
// A led to count bpms
pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(LED_BUILTIN, HIGH);
delay(500);
digitalWrite(LED_BUILTIN, LOW);
delay(500);
digitalWrite(LED_BUILTIN, HIGH);
delay(500);
digitalWrite(LED_BUILTIN, LOW);
delay(500);
Serial.begin(115200);
/*while (!Serial)
delay(1);*/
// Setup our clock system
// Inits the clock
uClock.init();
// Set the callback function for the clock output to send MIDI Sync message.
uClock.setOnSync24(onSync24Callback);
// Set the callback function for MIDI Start and Stop messages.
uClock.setOnClockStart(onClockStart);
uClock.setOnClockStop(onClockStop);
// Set the clock BPM to 126 BPM
uClock.setTempo(60);
// Starts the clock, tick-tac-tick-tac..
//Serial.println("about to uClock.start()..."); Serial.flush();
uClock.start();
//Serial.println("uClock.start()ed!"); Serial.flush();
}
uint32_t count = 0;
// Do it whatever to interface with Clock.stop(), Clock.start(), Clock.setTempo() and integrate your environment...
void loop() {
//MIDI_USB.read();
//count++;
//if (millis()%1000==0)
// Serial.println("looped!");
}

@ -0,0 +1,96 @@
/* USB MIDI Sync Box - example that also prints to serial and sends USB midi as well as blinking LED
* (usb part still needs testing to make sure it works!)
*
* This example code is in the public domain.
*
*/
#include <Adafruit_TinyUSB.h>
#include <MIDI.h>
Adafruit_USBD_MIDI usb_midi;
MIDI_CREATE_INSTANCE(Adafruit_USBD_MIDI, usb_midi, MIDI_USB);
//#define LED_BUILTIN PIN_LED_B
//MIDI_CREATE_INSTANCE(HardwareSerial, Serial1, MIDI);
#include <uClock.h>
uint8_t bpm_blink_timer = 1;
void handle_bpm_led(uint32_t tick)
{
// BPM led indicator
if ( !(tick % (96)) || (tick == 1) ) { // first compass step will flash longer
bpm_blink_timer = 8;
digitalWrite(LED_BUILTIN, LOW);
} else if ( !(tick % (24)) ) { // each quarter led on
bpm_blink_timer = 1;
digitalWrite(LED_BUILTIN, LOW);
} else if ( !(tick % bpm_blink_timer) ) { // get led off
digitalWrite(LED_BUILTIN, HIGH);
}
}
// Internal clock handlers
void onSync24Callback(uint32_t tick) {
// Send MIDI_CLOCK to external gears
MIDI_USB.sendRealTime(midi::Clock);
handle_bpm_led(tick);
}
void onClockStart() {
MIDI_USB.sendRealTime(midi::Start);
}
void onClockStop() {
MIDI_USB.sendRealTime(midi::Stop);
}
void setup() {
#if defined(ARDUINO_ARCH_MBED) && defined(ARDUINO_ARCH_RP2040)
// Manual begin() is required on core without built-in support for TinyUSB such as mbed rp2040
TinyUSB_Device_Init(0);
#endif
MIDI_USB.begin(MIDI_CHANNEL_OMNI);
// A led to count bpms
pinMode(LED_BUILTIN, OUTPUT);
Serial.begin(115200);
while (!Serial)
delay(1);
// wait until device mounted
/*while( !TinyUSBDevice.mounted() ) {
Serial.println("waiting for usb..");
Serial.flush();
delay(1);
}*/
// Setup our clock system
// Inits the clock
Serial.println("about to uClock.init()..."); Serial.flush();
uClock.init();
// Set the callback function for the clock output to send MIDI Sync message.
uClock.setOnSync24(onSync24Callback);
// Set the callback function for MIDI Start and Stop messages.
uClock.setOnClockStart(onClockStart);
uClock.setOnClockStop(onClockStop);
// Set the clock BPM to 126 BPM
uClock.setTempo(126);
// Starts the clock, tick-tac-tick-tac..
Serial.println("about to uClock.start()..."); Serial.flush();
uClock.start();
Serial.println("uClock.start()ed!"); Serial.flush();
}
uint32_t count = 0;
// Do it whatever to interface with Clock.stop(), Clock.start(), Clock.setTempo() and integrate your environment...
void loop() {
MIDI_USB.read();
count++;
if (millis()%1000==0)
Serial.println("looped!!!");
}

@ -2,6 +2,7 @@
#include <freertos/task.h> #include <freertos/task.h>
#include <freertos/semphr.h> #include <freertos/semphr.h>
// esp32-specific timer
#define TIMER_ID 0 #define TIMER_ID 0
hw_timer_t * _uclockTimer = NULL; hw_timer_t * _uclockTimer = NULL;
// mutex control for ISR // mutex control for ISR

@ -0,0 +1,57 @@
#include <Arduino.h>
#include "FreeRTOS.h"
#include <task.h>
#include <semphr.h>
#include "pico/sync.h"
// RPi-specific timer
struct repeating_timer timer;
// FreeRTOS main clock task size in bytes
#define CLOCK_STACK_SIZE 5*1024 // adjust for your needs, a sequencer with heavy serial handling should be large in size
TaskHandle_t taskHandle;
// mutex to protect the shared resource
SemaphoreHandle_t _mutex;
// mutex control for task
#define ATOMIC(X) xSemaphoreTake(_mutex, portMAX_DELAY); X; xSemaphoreGive(_mutex);
// forward declaration of uClockHandler
void uClockHandler();
// ISR handler -- called when tick happens
bool handlerISR(repeating_timer *timer)
{
BaseType_t xHigherPriorityTaskWoken = pdFALSE;
// Send a notification to task1
vTaskNotifyGiveFromISR(taskHandle, &xHigherPriorityTaskWoken);
portYIELD_FROM_ISR(xHigherPriorityTaskWoken);
return true;
}
// task for user clock process
void clockTask(void *pvParameters)
{
while (1) {
// wait for a notification from ISR
ulTaskNotifyTake(pdTRUE, portMAX_DELAY);
uClockHandler();
}
}
void initTimer(uint32_t init_clock)
{
// initialize the mutex for shared resource access
_mutex = xSemaphoreCreateMutex();
// create the clockTask
xTaskCreate(clockTask, "clockTask", CLOCK_STACK_SIZE, NULL, 1, &taskHandle);
// set up RPi interrupt timer
add_repeating_timer_us(init_clock, &handlerISR, NULL, &timer);
}
void setTimer(uint32_t us_interval) {
cancel_repeating_timer(&timer);
add_repeating_timer_us(us_interval, &handlerISR, NULL, &timer);
}

@ -57,6 +57,12 @@
#if defined(ARDUINO_ARCH_STM32) #if defined(ARDUINO_ARCH_STM32)
#include "platforms/stm32.h" #include "platforms/stm32.h"
#endif #endif
//
// RP2040 (Raspberry Pico) family
//
#if defined(ARDUINO_ARCH_RP2040)
#include "platforms/rp2040.h"
#endif
// //
// Platform specific timer setup/control // Platform specific timer setup/control

Loading…
Cancel
Save