You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
uClock/src/uClock.cpp

348 lines
6.9 KiB

/*!
* @file uClock.cpp
* Project BPM clock generator for Arduino
* @brief A Library to implement BPM clock tick calls using hardware timer1 interruption. Tested on ATmega168/328, ATmega16u4/32u4 and ATmega2560.
* Derived work from mididuino MidiClock class. (c) 2008 - 2011 - Manuel Odendahl - wesen@ruinwesen.com
* @version 0.8.1
* @author Romulo Silva
* @date 08/21/2020
* @license MIT - (c) 2020 - Romulo Silva - contact@midilab.co
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
// TODO: use float for decimal timming precision: 120.10, 120.20
// each 0.1 bpm equals 15.625 intervals on 16Mhz clock
// each 1 bpm equals 156.250 intervals on 16Mhz clock
#include "uClock.h"
namespace umodular { namespace clock {
uint8_t _tmpSREG;
static inline uint32_t phase_mult(uint32_t val)
{
return (val * PHASE_FACTOR) >> 8;
}
static inline uint16_t clock_diff(uint16_t old_clock, uint16_t new_clock)
{
if (new_clock >= old_clock) {
return new_clock - old_clock;
} else {
return new_clock + (65535 - old_clock);
}
}
uClockClass::uClockClass()
{
pll_x = 220;
mode = INTERNAL_CLOCK;
resetCounters();
setTempo(120);
onClock96PPQNCallback = NULL;
onClock32PPQNCallback = NULL;
onClock16PPQNCallback = NULL;
onClockStartCallback = NULL;
onClockStopCallback = NULL;
}
void uClockClass::init()
{
start_timer = 0;
state = PAUSED;
//
// Configure timers and prescale
// Timmer1: ATMega128, ATMega328, AtMega16U4 and AtMega32U4
_tmpSREG = SREG;
cli();
// Waveform Generation Mode (WGM) 16-bit timer settings
// (WGM10, WGM12) Mode 5: Fast Pulse Width Modulation (PWM), 8-bit
// Clock Speed Selection
// CS10: Clock (No prescaling)
TCCR1A = _BV(WGM10);
TCCR1B = _BV(CS10) | _BV(WGM12);
TIMSK1 |= _BV(TOIE1);
SREG = _tmpSREG;
}
void uClockClass::start()
{
resetCounters();
start_timer = millis();
if (onClockStartCallback) {
onClockStartCallback();
}
if (mode == INTERNAL_CLOCK) {
state = STARTED;
} else {
state = STARTING;
}
}
void uClockClass::stop()
{
state = PAUSED;
start_timer = 0;
resetCounters();
if (onClockStopCallback) {
onClockStopCallback();
}
}
void uClockClass::pause()
{
if (mode == INTERNAL_CLOCK) {
if (state == PAUSED) {
start();
} else {
stop();
}
}
}
void uClockClass::setTempo(uint16_t bpm)
{
if (mode == EXTERNAL_CLOCK) {
return;
}
if (tempo == bpm) {
return;
}
if (bpm > 300 || bpm == 0) {
return;
}
_tmpSREG = SREG;
cli();
tempo = bpm;
//interval = 62500 / (tempo * 24 / 60) - 4;
interval = (uint16_t)(156250 / tempo) - 4;
SREG = _tmpSREG;
}
uint16_t uClockClass::getTempo()
{
return (156250 / interval);
}
uint8_t uClockClass::getMode()
{
return mode;
}
void uClockClass::setMode(uint8_t tempo_mode)
{
mode = tempo_mode;
}
void uClockClass::clockMe()
{
if (mode == EXTERNAL_CLOCK) {
handleClock();
}
}
void uClockClass::resetCounters()
{
counter = 0;
last_clock = 0;
div96th_counter = 0;
div32th_counter = 0;
div16th_counter = 0;
mod6_counter = 0;
indiv96th_counter = 0;
inmod6_counter = 0;
}
// TODO: Tap stuff
void uClockClass::tap()
{
// tap me
}
// TODO: Shuffle stuff
void uClockClass::shuffle()
{
// shuffle me
}
void uClockClass::handleClock()
{
uint16_t cur_clock = _clock;
uint16_t diff = clock_diff(last_clock, cur_clock);
last_interval = diff;
last_clock = cur_clock;
indiv96th_counter++;
inmod6_counter++;
if (inmod6_counter == 6) {
inmod6_counter = 0;
}
switch (state) {
case PAUSED:
break;
case STARTING:
state = STARTED;
break;
case STARTED:
if (indiv96th_counter == 2) {
interval = diff;
} else {
interval = (((uint32_t)interval * (uint32_t)pll_x) + (uint32_t)(256 - pll_x) * (uint32_t)diff) >> 8;
}
break;
}
}
void uClockClass::handleTimerInt()
{
if (counter == 0) {
counter = interval;
if (onClock96PPQNCallback) {
onClock96PPQNCallback(&div96th_counter);
}
if (mod6_counter == 0) {
if (onClock32PPQNCallback) {
onClock32PPQNCallback(&div32th_counter);
}
if (onClock16PPQNCallback) {
onClock16PPQNCallback(&div16th_counter);
}
div16th_counter++;
div32th_counter++;
}
if (mod6_counter == 3) {
if (onClock32PPQNCallback) {
onClock32PPQNCallback(&div32th_counter);
}
div32th_counter++;
}
div96th_counter++;
mod6_counter++;
if (mode == EXTERNAL_CLOCK) {
uint16_t cur_clock = _clock;
uint16_t diff = clock_diff(last_clock, cur_clock);
if ((div96th_counter < indiv96th_counter) || (div96th_counter > (indiv96th_counter + 1))) {
div96th_counter = indiv96th_counter;
mod6_counter = inmod6_counter;
}
if (div96th_counter <= indiv96th_counter) {
counter -= phase_mult(diff);
} else {
if (counter > diff) {
counter += phase_mult(counter - diff);
}
}
}
if (mod6_counter == 6) {
mod6_counter = 0;
}
} else {
counter--;
}
}
// elapsed time support
uint8_t uClockClass::getNumberOfSeconds(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return ((_timer - time) / 1000) % SECS_PER_MIN;
}
uint8_t uClockClass::getNumberOfMinutes(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return (((_timer - time) / 1000) / SECS_PER_MIN) % SECS_PER_MIN;
}
uint8_t uClockClass::getNumberOfHours(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return (((_timer - time) / 1000) % SECS_PER_DAY) / SECS_PER_HOUR;
}
uint8_t uClockClass::getNumberOfDays(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return ((_timer - time) / 1000) / SECS_PER_DAY;
}
uint32_t uClockClass::getNowTimer()
{
return _timer;
}
uint32_t uClockClass::getPlayTime()
{
return start_timer;
}
} } // end namespace umodular::clock
umodular::clock::uClockClass uClock;
volatile uint16_t _clock = 0;
volatile uint32_t _timer = 0;
//
// TIMER1 HANDLER INTERRUPT
//
ISR(TIMER1_OVF_vect)
{
// global timer counter
_timer = millis();
if (uClock.state == umodular::clock::STARTED) {
_clock++;
uClock.handleTimerInt();
}
}