You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
uClock/src/uClock.cpp

450 lines
9.4 KiB

/*!
* @file uClock.cpp
* Project BPM clock generator for Arduino
* @brief A Library to implement BPM clock tick calls using hardware timer1 interruption. Tested on ATmega168/328, ATmega16u4/32u4 and ATmega2560.
* Derived work from mididuino MidiClock class. (c) 2008 - 2011 - Manuel Odendahl - wesen@ruinwesen.com
* @version 0.10.2
* @author Romulo Silva
* @date 08/21/2020
* @license MIT - (c) 2020 - Romulo Silva - contact@midilab.co
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "uClock.h"
#define ATOMIC(X) noInterrupts(); X; interrupts();
//
// Timer setup for work clock
//
#if defined(TEENSYDUINO) && !defined(__AVR_ATmega32U4__)
IntervalTimer _teensyTimer;
void teensyInterrupt();
void workClock()
{
_teensyTimer.begin(teensyInterrupt, 16);
// Set the interrupt priority level, controlling which other interrupts
// this timer is allowed to interrupt. Lower numbers are higher priority,
// with 0 the highest and 255 the lowest. Most other interrupts default to 128.
// As a general guideline, interrupt routines that run longer should be given
// lower priority (higher numerical values).
_teensyTimer.priority(0);
}
#else
void workClock()
{
ATOMIC(
// Timer1
TCCR1A = 0;
TCCR1B = 0;
TCNT1 = 0;
// set the speed of our internal clock system
OCR1A = 255;
// turn on CTC mode
TCCR1B |= (1 << WGM12);
// Set CS12, CS11 and CS10 bits for 1 prescaler
TCCR1B |= (0 << CS12) | (0 << CS11) | (1 << CS10);
// enable timer compare interrupt
TIMSK1 |= (1 << OCIE1A);
)
/*
ATOMIC(
// Timer2
TCCR2A = 0;
TCCR2B = 0;
TCNT2 = 0;
// set the speed of our internal clock system
OCR2A = 255;
// turn on CTC mode
TCCR2B |= (1 << WGM21);
// Set CS22, CS21 and CS20 bits for 1 prescaler
TCCR2B |= (0 << CS22) | (0 << CS21) | (1 << CS20);
// enable timer compare interrupt
TIMSK2 |= (1 << OCIE2A);
)
*/
}
#endif
namespace umodular { namespace clock {
static inline uint32_t phase_mult(uint32_t val)
{
return (val * PHASE_FACTOR) >> 8;
}
static inline uint16_t clock_diff(uint16_t old_clock, uint16_t new_clock)
{
if (new_clock >= old_clock) {
return new_clock - old_clock;
} else {
return new_clock + (65535 - old_clock);
}
}
uClockClass::uClockClass()
{
// drift is used to sligth calibrate with your slave clock
drift = 1;
slave_drift = 0;
pll_x = 220;
tempo = 120;
start_timer = 0;
last_interval = 0;
sync_interval = 0;
state = PAUSED;
mode = INTERNAL_CLOCK;
ext_interval_acc = 0;
resetCounters();
onClock96PPQNCallback = NULL;
onClock32PPQNCallback = NULL;
onClock16PPQNCallback = NULL;
onClockStartCallback = NULL;
onClockStopCallback = NULL;
// first interval calculus
setTempo(tempo);
}
void uClockClass::init()
{
// init work clock timer interrupt in Hz
workClock();
}
void uClockClass::start()
{
resetCounters();
start_timer = millis();
if (onClockStartCallback) {
onClockStartCallback();
}
if (mode == INTERNAL_CLOCK) {
state = STARTED;
} else {
state = STARTING;
}
}
void uClockClass::stop()
{
state = PAUSED;
start_timer = 0;
resetCounters();
if (onClockStopCallback) {
onClockStopCallback();
}
}
void uClockClass::pause()
{
if (mode == INTERNAL_CLOCK) {
if (state == PAUSED) {
start();
} else {
stop();
}
}
}
void uClockClass::setTempo(float bpm)
{
if (mode == EXTERNAL_CLOCK) {
return;
}
if (bpm < MIN_BPM || bpm > MAX_BPM) {
return;
}
tempo = bpm;
ATOMIC(
//interval = (freq_resolution / (tempo * 24 / 60)) - drift;
//interval = 62500 / (tempo * 24 / 60) - drift;
interval = (uint16_t)((156250.0 / tempo) - drift);
)
}
float uClockClass::getTempo()
{
if (mode == EXTERNAL_CLOCK) {
uint32_t acc = 0;
uint8_t acc_counter = 0;
for (uint8_t i=0; i < EXT_INTERVAL_BUFFER_SIZE; i++) {
if ( ext_interval_buffer[i] != 0) {
acc += ext_interval_buffer[i];
++acc_counter;
}
}
if (acc != 0) {
// get average interval, because MIDI sync world is a wild place...
//tempo = (((float)freq_resolution/24) * 60) / (float)(acc / acc_counter);
// derivated one time calc value = ( freq_resolution / 24 ) * 60
tempo = (float)(156250.0 / (acc / acc_counter));
}
}
return tempo;
}
void uClockClass::setDrift(uint8_t value)
{
ATOMIC(drift = value)
// force set tempo to update runtime interval
setTempo(tempo);
}
void uClockClass::setSlaveDrift(uint8_t value)
{
ATOMIC(slave_drift = value)
}
uint8_t uClockClass::getDrift()
{
return drift;
}
// each interval is 16us
// this method is usefull for debug
uint16_t uClockClass::getInterval()
{
return interval;
}
// Main poolling tick call
uint8_t uClockClass::getTick(uint32_t * tick)
{
ATOMIC(
uint32_t last_tick = internal_tick;
)
if (*tick != last_tick) {
*tick = last_tick;
return 1;
}
if (last_tick - *tick > 1) {
*tick++;
return 1;
}
return 0;
}
void uClockClass::setMode(uint8_t tempo_mode)
{
mode = tempo_mode;
}
uint8_t uClockClass::getMode()
{
return mode;
}
void uClockClass::clockMe()
{
if (mode == EXTERNAL_CLOCK) {
ATOMIC(
handleExternalClock()
)
}
}
void uClockClass::resetCounters()
{
counter = 0;
last_clock = 0;
internal_tick = 0;
external_tick = 0;
div32th_counter = 0;
div16th_counter = 0;
mod6_counter = 0;
inmod6_counter = 0;
ext_interval_idx = 0;
}
// TODO: Tap stuff
void uClockClass::tap()
{
// tap me
}
// TODO: Shuffle stuff
void uClockClass::shuffle()
{
// shuffle me
}
void uClockClass::handleExternalClock()
{
last_interval = clock_diff(last_clock, _clock);
last_clock = _clock;
// accumulate interval incomming ticks data for getTempo() smooth reads on slave mode
ext_interval_buffer[ext_interval_idx++ % EXT_INTERVAL_BUFFER_SIZE] = last_interval;
// slave tick me!
external_tick++;
switch (state) {
case PAUSED:
break;
case STARTING:
state = STARTED;
break;
case STARTED:
if (external_tick == 1) {
interval = last_interval;
} else {
interval = (((uint32_t)interval * (uint32_t)pll_x) + (uint32_t)(256 - pll_x) * (uint32_t)last_interval) >> 8;
}
break;
}
}
void uClockClass::handleTimerInt()
{
if (counter == 0) {
// update internal clock base counter
counter = interval;
// need a callback?
// please, use the polling method with getTick() instead...
if (onClock96PPQNCallback) {
onClock96PPQNCallback(&internal_tick);
}
if (mod6_counter == 0) {
if (onClock32PPQNCallback) {
onClock32PPQNCallback(&div32th_counter);
}
if (onClock16PPQNCallback) {
onClock16PPQNCallback(&div16th_counter);
}
div16th_counter++;
div32th_counter++;
}
if (mod6_counter == 3) {
if (onClock32PPQNCallback) {
onClock32PPQNCallback(&div32th_counter);
}
div32th_counter++;
}
// tick me!
internal_tick++;
mod6_counter++;
if (mode == EXTERNAL_CLOCK) {
sync_interval = clock_diff(last_clock, _clock);
if ((internal_tick < external_tick) || (internal_tick > (external_tick + 1))) {
internal_tick = external_tick;
}
if (internal_tick <= external_tick) {
counter -= phase_mult(sync_interval);
} else {
if (counter > sync_interval) {
counter += phase_mult(counter - sync_interval);
}
}
}
if (mod6_counter == 6) {
mod6_counter = 0;
}
} else {
counter--;
}
}
// elapsed time support
uint8_t uClockClass::getNumberOfSeconds(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return ((_timer - time) / 1000) % SECS_PER_MIN;
}
uint8_t uClockClass::getNumberOfMinutes(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return (((_timer - time) / 1000) / SECS_PER_MIN) % SECS_PER_MIN;
}
uint8_t uClockClass::getNumberOfHours(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return (((_timer - time) / 1000) % SECS_PER_DAY) / SECS_PER_HOUR;
}
uint8_t uClockClass::getNumberOfDays(uint32_t time)
{
if ( time == 0 ) {
return time;
}
return ((_timer - time) / 1000) / SECS_PER_DAY;
}
uint32_t uClockClass::getNowTimer()
{
return _timer;
}
uint32_t uClockClass::getPlayTime()
{
return start_timer;
}
} } // end namespace umodular::clock
umodular::clock::uClockClass uClock;
volatile uint16_t _clock = 0;
volatile uint32_t _timer = 0;
//
// TIMER INTERRUPT HANDLER
// Clocked at: 62.5kHz/16usec
//
#if defined(TEENSYDUINO) && !defined(__AVR_ATmega32U4__)
void teensyInterrupt()
#else
ISR(TIMER1_COMPA_vect)
//ISR(TIMER2_COMPA_vect)
#endif
{
// global timer counter
_timer = millis();
if (uClock.state == uClock.STARTED) {
_clock++;
uClock.handleTimerInt();
}
}