The **uClock BPM Generator library** is designed to implement precise and reliable BPM clock tick calls using the microcontroller's timer hardware interrupt. It is built to be multi-architecture, portable, and easy to use within the open-source ecosystem.
We have chosen PlatformIO and Arduino as our official deployment platforms. The library has been supported and tested on various **AVR boards (ATmega168/328, ATmega16u4/32u4, and ATmega2560)** as well as **ARM boards (Teensy, STM32XX, ESP32, Raspberry Pi Pico, Seeed Studio XIAO M0, and RP2040)**.
The absence of real-time features necessary for creating professional-level embedded devices for music and video on open-source community-based platforms like Arduino led to the development of uClock. By leveraging timer hardware interrupts, the library can schedule and manage real-time processing with safe shared resource access through its API.
With uClock, you can create professional-grade sequencers, sync boxes, or generate a precise BPM clock for external devices in music, audio/video production, performances, or tech art installations. The library offers an external synchronization schema that enables you to generate an internal clock based on an external clock source, allowing you to control your entire MIDI setup or any other protocols according to your specific preferences and requirements.
1.**setOnOutputPPQN(onPPQNCallback) > onOutputPPQNCallback(uint32_t tick)** Calls are made on each new output pulse based on the selected PPQN resolution (if no PPQN is set, the default is 96 PPQN).
2.**setOnInputPPQN(onPPQNCallback) > onInputPPQNCallback(uint32_t tick)** Set the expected input PPQN (Pulses Per Quarter Note) resolution for external clock sync.
3.**setOnStep(onStepCallback) > onStepCallback(uint32_t step)** A good way to code an old-style step sequencer based on a 16th-note schema, which is not dependent on PPQN (Pulses Per Quarter Note) output config.
4.**setOnSync24(onSync24Callback) > onSync24Callback(uint32_t tick)** A good way to code a clock machine or keep your devices in sync with your system is to use setOnSyncXX(), where XX represents the PPQN (Pulses Per Quarter Note) value you want to use. MIDI specifications typically expect 24 PPQN, but if you're working with other devices that are not MIDI standard, you can choose a different PPQN value. Please refer to the supported PPQNs to select from. You can use one or more setOnSyncXX callbacks for different sync output signatures.
5.**setOnClockStart(onClockStartCallback) > onClockStartCallback()** On the uClock Start event.
6.**setOnClockStop(onClockStopCallback) > onClockStopCallback()** On the uClock Stop event.
To generate a MIDI sync signal and synchronize external MIDI devices, you can start with a resolution of 24 PPQN, which aligns with the clocking standards of modern MIDI-syncable devices commonly available on the market. By sending 24 pulses per quarter-note interval, you can ensure effective synchronization among your MIDI devices.
If you are working on the development of a vintage-style step sequencer, utilizing a resolution of 96PPQN is a fitting option to initiate the coding process. Then you can use onStepCallback call which corresponds to a step played, note or event.
If a supported board isn't detected during compilation then a generic fallback approach will be used. This does not utilise any interrupts and so does not ensure accurate timekeeping. This can be useful to port your projects to boards that do not have support in uClock yet, or to test if suspected bugs in your code are related to interactions with interrupts or task handling.
- **setClock96PPQNOutput(onClock96PPQNOutputCallback)** is now _setOnPPQN(onPPQNCallback)_ and this clock depends on the PPQN setup using _setPPQN(clockPPQNResolution)_. For clock setup you now use a separated callback via _setOnSync24(onSync24Callback)_
If created a device using setClock16PPQNOutput only you just change the API call to setOnStep. If you were dependent on setClock96PPQNOutput you might need to review your tick counting system, depending on which PPQN clock resolution you choose to use.
Here a few examples on the usage of Clock library for MIDI devices, keep in mind the need to make your own MIDI interface, more details will be avaliable soon but until that, you can find good material over the net about the subject.
If you don't have native USB/MIDI support on your microcontroller and don't want to build a MIDI interface and you are going to use your arduino only with your PC, you can use a Serial-to-Midi bridge and connects your arduino via USB cable to your conputer to use it as a MIDI tool [like this one](http://projectgus.github.io/hairless-midiserial/).
An example on how to create a simple MIDI Sync Box on Teensy boards and USB Midi setup. Select "MIDI" from the Tools->USB Type menu for Teensy to becomes a USB MIDI first.
A clone of Roland TB303 step sequencer main engine, here is an example with no user interface for interaction. If you're looking for a user interactable TB303 sequencer engine clone with user interface please take a look here https://github.com/midilab/uClock/tree/master/examples/AcidStepSequencer.
// you can change data by using _sequencer[] and _step_length only! do not mess with _note_stack[]!
// IMPORTANT!!! Sequencer main data are used inside a interrupt enabled by uClock for BPM clock timing. Make sure all sequencer data are modified atomicly using this macro ATOMIC();