diff --git a/Hx_PlateReverb/Hx_PlateReverb.ino b/Hx_PlateReverb/Hx_PlateReverb.ino new file mode 100644 index 0000000..b6582dc --- /dev/null +++ b/Hx_PlateReverb/Hx_PlateReverb.ino @@ -0,0 +1,221 @@ +/** + Example project for the Stereo Plate reverb audio component + (c) 31.12.2020 by Piotr Zapart www-hexefx.com + + Attention!!! Works with Teensy 4.x only! + + The audio path follows a typical scheme used in mixing consoles + where the reverb is put into aux path. + Each source (like i2s or PlaySDWav etc) has a Reverb Send Level control + The Stereo reverb output is mixed then with the dry signals using the output mixers. + + +*/ + +#include +#include "Audio.h" +#include "effect_platervbstereo.h" + +#define I2S_REVERB_SEND_CH 0 +#define SDWAV_REVERB_SEND_CH 1 +#define REVERB_MIX_CH 1 +#define I2S_MIX_CH 0 + +AudioPlaySdWav playSdWav; +AudioInputI2S i2s_in; +AudioMixer4 reverb_send_L; +AudioMixer4 reverb_send_R; +AudioEffectPlateReverb reverb; +AudioMixer4 mixer_out_L; +AudioMixer4 mixer_out_R; +AudioOutputI2S i2s_out; + +AudioConnection patchCord1(playSdWav, 0, reverb_send_L, 1); // wav player L reverb send +AudioConnection patchCord2(playSdWav, 0, mixer_out_L, 2); // wav player L into output mixer +AudioConnection patchCord3(playSdWav, 1, reverb_send_R, 1); // wav player R reverb send +AudioConnection patchCord4(playSdWav, 1, mixer_out_R, 2); // wav player R into output mixer + +AudioConnection patchCord5(i2s_in, 0, mixer_out_L, 0); // i2s out L into output mixer +AudioConnection patchCord6(i2s_in, 1, mixer_out_R, 0); // i2s out R into output mixer + +AudioConnection patchCord7(i2s_in, 0, reverb_send_L, 0); // i2s out reverb send L +AudioConnection patchCord8(i2s_in, 1, reverb_send_R, 0); // i2s out reverb send R + +AudioConnection patchCord9(reverb_send_L, 0, reverb, 0); // reverb inputs +AudioConnection patchCord10(reverb_send_R, 0, reverb, 1); + +AudioConnection patchCord11(reverb, 0, mixer_out_L, 1); // reverb out into output mixer +AudioConnection patchCord12(reverb, 1, mixer_out_R, 1); + +AudioConnection patchCord13(mixer_out_L, 0, i2s_out, 0); // output mixers -> codec DAC +AudioConnection patchCord14(mixer_out_R, 0, i2s_out, 1); + +AudioControlSGTL5000 codec; + + +uint32_t timeLast = 0, timeNow = 0; + +void flexRamInfo(void); +void i2s_set_rev_send(float32_t lvl); +void reverb_set_volume(float32_t lvl); +void wav_set_rev_send(float32_t lvl); + +void setup() +{ + Serial.begin(115200); + //while(!Serial); + delay(1000); + Serial.println("--------------------------"); + Serial.println("T40_GFX - stereo plate reverb"); +#ifdef REVERB_USE_DMAMEM + Serial.println("DMAMEM is used for reverb buffers"); +#endif + AudioMemory(12); + codec.enable(); + codec.volume(0.0); // headphones not used + codec.inputSelect(AUDIO_INPUT_LINEIN); + codec.lineInLevel(2); + codec.lineOutLevel(31); + flexRamInfo(); + + i2s_set_rev_send(0.7); + reverb_set_volume(0.6); + + reverb.size(1.0); // max reverb length + reverb.lowpass(0.3); // sets the reverb master lowpass filter + reverb.lodamp(0.1); // amount of low end loss in the reverb tail + reverb.hidamp(0.2); // amount of treble loss in the reverb tail + reverb.diffusion(1.0); // 1.0 is the detault setting, lower it to create more "echoey" reverb + +} + +void loop() +{ + timeNow = millis(); + if (timeNow - timeLast > 1000) + { + Serial.print("Reverb CPU load = "); + Serial.println(reverb.processorUsageMax()); + timeLast = timeNow; + } + +} + + +void flexRamInfo(void) +{ // credit to FrankB, KurtE and defragster ! +#if defined(__IMXRT1052__) || defined(__IMXRT1062__) + int itcm = 0; + int dtcm = 0; + int ocram = 0; + Serial.print("FlexRAM-Banks: ["); + for (int i = 15; i >= 0; i--) + { + switch ((IOMUXC_GPR_GPR17 >> (i * 2)) & 0b11) + { + case 0b00: + Serial.print("."); + break; + case 0b01: + Serial.print("O"); + ocram++; + break; + case 0b10: + Serial.print("D"); + dtcm++; + break; + case 0b11: + Serial.print("I"); + itcm++; + break; + } + } + Serial.print("] ITCM: "); + Serial.print(itcm * 32); + Serial.print(" KB, DTCM: "); + Serial.print(dtcm * 32); + Serial.print(" KB, OCRAM: "); + Serial.print(ocram * 32); +#if defined(__IMXRT1062__) + Serial.print("(+512)"); +#endif + Serial.println(" KB"); + extern unsigned long _stext; + extern unsigned long _etext; + extern unsigned long _sdata; + extern unsigned long _ebss; + extern unsigned long _flashimagelen; + extern unsigned long _heap_start; + + Serial.println("MEM (static usage):"); + Serial.println("RAM1:"); + + Serial.print("ITCM = FASTRUN: "); + Serial.print((unsigned)&_etext - (unsigned)&_stext); + Serial.print(" "); + Serial.print((float)((unsigned)&_etext - (unsigned)&_stext) / ((float)itcm * 32768.0) * 100.0); + Serial.print("% of "); + Serial.print(itcm * 32); + Serial.print("kb "); + Serial.print(" ("); + Serial.print(itcm * 32768 - ((unsigned)&_etext - (unsigned)&_stext)); + Serial.println(" Bytes free)"); + + Serial.print("DTCM = Variables: "); + Serial.print((unsigned)&_ebss - (unsigned)&_sdata); + Serial.print(" "); + Serial.print((float)((unsigned)&_ebss - (unsigned)&_sdata) / ((float)dtcm * 32768.0) * 100.0); + Serial.print("% of "); + Serial.print(dtcm * 32); + Serial.print("kb "); + Serial.print(" ("); + Serial.print(dtcm * 32768 - ((unsigned)&_ebss - (unsigned)&_sdata)); + Serial.println(" Bytes free)"); + + Serial.println("RAM2:"); + Serial.print("OCRAM = DMAMEM: "); + Serial.print((unsigned)&_heap_start - 0x20200000); + Serial.print(" "); + Serial.print((float)((unsigned)&_heap_start - 0x20200000) / ((float)512 * 1024.0) * 100.0); + Serial.print("% of "); + Serial.print(512); + Serial.print("kb"); + Serial.print(" ("); + Serial.print(512 * 1024 - ((unsigned)&_heap_start - 0x20200000)); + Serial.println(" Bytes free)"); + + Serial.print("FLASH: "); + Serial.print((unsigned)&_flashimagelen); + Serial.print(" "); + Serial.print(((unsigned)&_flashimagelen) / (2048.0 * 1024.0) * 100.0); + Serial.print("% of "); + Serial.print(2048); + Serial.print("kb"); + Serial.print(" ("); + Serial.print(2048 * 1024 - ((unsigned)&_flashimagelen)); + Serial.println(" Bytes free)"); + +#endif +} + +void i2s_set_rev_send(float32_t lvl) +{ + lvl = constrain(lvl, 0.0, 1.0); + reverb_send_L.gain(I2S_REVERB_SEND_CH, lvl); + reverb_send_R.gain(I2S_REVERB_SEND_CH, lvl); +} + + +void reverb_set_volume(float32_t lvl) +{ + lvl = constrain(lvl, 0.0, 1.0); + mixer_out_L.gain(REVERB_MIX_CH, lvl); + mixer_out_R.gain(REVERB_MIX_CH, lvl); +} + +void wav_set_rev_send(float32_t lvl) +{ + lvl = constrain(lvl, 0.0, 1.0); + reverb_send_L.gain(SDWAV_REVERB_SEND_CH, lvl); + reverb_send_R.gain(SDWAV_REVERB_SEND_CH, lvl); +} diff --git a/Hx_PlateReverb/StereoPlateReverb.png b/Hx_PlateReverb/StereoPlateReverb.png new file mode 100644 index 0000000..26390fa Binary files /dev/null and b/Hx_PlateReverb/StereoPlateReverb.png differ diff --git a/Hx_PlateReverb/effect_platervbstereo.cpp b/Hx_PlateReverb/effect_platervbstereo.cpp new file mode 100644 index 0000000..e389e85 --- /dev/null +++ b/Hx_PlateReverb/effect_platervbstereo.cpp @@ -0,0 +1,484 @@ +/* Stereo plate reverb for Teensy 4 + * + * Author: Piotr Zapart + * www.hexefx.com + * + * Copyright (c) 2020 by Piotr Zapart + * + * Development of this audio library was funded by PJRC.COM, LLC by sales of + * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop + * open source software by purchasing Teensy or other PJRC products. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice, development funding notice, and this permission + * notice shall be included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + * THE SOFTWARE. + */ + + +#include +#include "effect_platervbstereo.h" +#include "utility/dspinst.h" +#include "synth_waveform.h" + +#define INP_ALLP_COEFF (0.65) +#define LOOP_ALLOP_COEFF (0.65) + +#define HI_LOSS_FREQ (0.3) +#define HI_LOSS_FREQ_MAX (0.08) +#define LO_LOSS_FREQ (0.06) + +#define LFO_AMPL_BITS (5) // 2^LFO_AMPL_BITS will be the LFO amplitude +#define LFO_AMPL ((1<>1) // read offset = half the amplitude +#define LFO_FRAC_BITS (16 - LFO_AMPL_BITS) // fractional part used for linear interpolation +#define LFO_FRAC_MASK ((1< 16 +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +#endif +#if AUDIO_BLOCK_SAMPLES > 32 +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +#endif +#if AUDIO_BLOCK_SAMPLES > 48 +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +#endif +#if AUDIO_BLOCK_SAMPLES > 64 +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +#endif +#if AUDIO_BLOCK_SAMPLES > 80 +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +#endif +#if AUDIO_BLOCK_SAMPLES > 96 +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +#endif +#if AUDIO_BLOCK_SAMPLES > 112 +0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, +#endif +} }; + +void AudioEffectPlateReverb::update() +{ + const audio_block_t *blockL, *blockR; + +#if defined(__ARM_ARCH_7EM__) + audio_block_t *outblockL; + audio_block_t *outblockR; + int i; + float32_t input, acc, temp1, temp2; + uint16_t temp16; + float32_t rv_time; + + // for LFOs: + int16_t lfo1_out_sin, lfo1_out_cos, lfo2_out_sin, lfo2_out_cos; + int32_t y0, y1; + int64_t y; + uint32_t idx; + + blockL = receiveReadOnly(0); + blockR = receiveReadOnly(1); + outblockL = allocate(); + outblockR = allocate(); + if (!outblockL || !outblockR) { + if (outblockL) release(outblockL); + if (outblockR) release(outblockR); + if (blockL) release((audio_block_t *)blockL); + if (blockR) release((audio_block_t *)blockR); + return; + } + + if (!blockL) blockL = &zeroblock; + if (!blockR) blockR = &zeroblock; + // convert data to float32 + arm_q15_to_float((q15_t *)blockL->data, input_blockL, AUDIO_BLOCK_SAMPLES); + arm_q15_to_float((q15_t *)blockR->data, input_blockR, AUDIO_BLOCK_SAMPLES); + + rv_time = rv_time_k; + + for (i=0; i < AUDIO_BLOCK_SAMPLES; i++) + { + // do the LFOs + lfo1_phase_acc += lfo1_adder; + idx = lfo1_phase_acc >> 24; // 8bit lookup table address + y0 = AudioWaveformSine[idx]; + y1 = AudioWaveformSine[idx+1]; + idx = lfo1_phase_acc & 0x00FFFFFF; // lower 24 bit = fractional part + y = (int64_t)y0 * (0x00FFFFFF - idx); + y += (int64_t)y1 * idx; + lfo1_out_sin = (int32_t) (y >> (32-8)); // 16bit output + idx = ((lfo1_phase_acc >> 24)+64) & 0xFF; + y0 = AudioWaveformSine[idx]; + y1 = AudioWaveformSine[idx + 1]; + y = (int64_t)y0 * (0x00FFFFFF - idx); + y += (int64_t)y1 * idx; + lfo1_out_cos = (int32_t) (y >> (32-8)); // 16bit output + + lfo2_phase_acc += lfo2_adder; + idx = lfo2_phase_acc >> 24; // 8bit lookup table address + y0 = AudioWaveformSine[idx]; + y1 = AudioWaveformSine[idx+1]; + idx = lfo2_phase_acc & 0x00FFFFFF; // lower 24 bit = fractional part + y = (int64_t)y0 * (0x00FFFFFF - idx); + y += (int64_t)y1 * idx; + lfo2_out_sin = (int32_t) (y >> (32-8)); //32-8->output 16bit, + idx = ((lfo2_phase_acc >> 24)+64) & 0xFF; + y0 = AudioWaveformSine[idx]; + y1 = AudioWaveformSine[idx + 1]; + y = (int64_t)y0 * (0x00FFFFFF - idx); + y += (int64_t)y1 * idx; + lfo2_out_cos = (int32_t) (y >> (32-8)); // 16bit output + + input = input_blockL[i] * input_attn; + // chained input allpasses, channel L + acc = in_allp1_bufL[in_allp1_idxL] + input * in_allp_k; + in_allp1_bufL[in_allp1_idxL] = input - in_allp_k * acc; + input = acc; + if (++in_allp1_idxL >= sizeof(in_allp1_bufL)/sizeof(float32_t)) in_allp1_idxL = 0; + + acc = in_allp2_bufL[in_allp2_idxL] + input * in_allp_k; + in_allp2_bufL[in_allp2_idxL] = input - in_allp_k * acc; + input = acc; + if (++in_allp2_idxL >= sizeof(in_allp2_bufL)/sizeof(float32_t)) in_allp2_idxL = 0; + + acc = in_allp3_bufL[in_allp3_idxL] + input * in_allp_k; + in_allp3_bufL[in_allp3_idxL] = input - in_allp_k * acc; + input = acc; + if (++in_allp3_idxL >= sizeof(in_allp3_bufL)/sizeof(float32_t)) in_allp3_idxL = 0; + + acc = in_allp4_bufL[in_allp4_idxL] + input * in_allp_k; + in_allp4_bufL[in_allp4_idxL] = input - in_allp_k * acc; + in_allp_out_L = acc; + if (++in_allp4_idxL >= sizeof(in_allp4_bufL)/sizeof(float32_t)) in_allp4_idxL = 0; + + input = input_blockR[i] * input_attn; + + // chained input allpasses, channel R + acc = in_allp1_bufR[in_allp1_idxR] + input * in_allp_k; + in_allp1_bufR[in_allp1_idxR] = input - in_allp_k * acc; + input = acc; + if (++in_allp1_idxR >= sizeof(in_allp1_bufR)/sizeof(float32_t)) in_allp1_idxR = 0; + + acc = in_allp2_bufR[in_allp2_idxR] + input * in_allp_k; + in_allp2_bufR[in_allp2_idxR] = input - in_allp_k * acc; + input = acc; + if (++in_allp2_idxR >= sizeof(in_allp2_bufR)/sizeof(float32_t)) in_allp2_idxR = 0; + + acc = in_allp3_bufR[in_allp3_idxR] + input * in_allp_k; + in_allp3_bufR[in_allp3_idxR] = input - in_allp_k * acc; + input = acc; + if (++in_allp3_idxR >= sizeof(in_allp3_bufR)/sizeof(float32_t)) in_allp3_idxR = 0; + + acc = in_allp4_bufR[in_allp4_idxR] + input * in_allp_k; + in_allp4_bufR[in_allp4_idxR] = input - in_allp_k * acc; + in_allp_out_R = acc; + if (++in_allp4_idxR >= sizeof(in_allp4_bufR)/sizeof(float32_t)) in_allp4_idxR = 0; + + // input allpases done, start loop allpases + input = lp_allp_out + in_allp_out_R; + acc = lp_allp1_buf[lp_allp1_idx] + input * loop_allp_k; // input is the lp allpass chain output + lp_allp1_buf[lp_allp1_idx] = input - loop_allp_k * acc; + input = acc; + if (++lp_allp1_idx >= sizeof(lp_allp1_buf)/sizeof(float32_t)) lp_allp1_idx = 0; + + acc = lp_dly1_buf[lp_dly1_idx]; // read the end of the delay + lp_dly1_buf[lp_dly1_idx] = input; // write new sample + input = acc; + if (++lp_dly1_idx >= sizeof(lp_dly1_buf)/sizeof(float32_t)) lp_dly1_idx = 0; // update index + + // hi/lo shelving filter + temp1 = input - lpf1; + lpf1 += temp1 * lp_lowpass_f; + temp2 = input - lpf1; + temp1 = lpf1 - hpf1; + hpf1 += temp1 * lp_hipass_f; + acc = lpf1 + temp2*lp_hidamp_k + hpf1*lp_lodamp_k; + acc = acc * rv_time * rv_time_scaler; // scale by the reveb time + + input = acc + in_allp_out_L; + + acc = lp_allp2_buf[lp_allp2_idx] + input * loop_allp_k; + lp_allp2_buf[lp_allp2_idx] = input - loop_allp_k * acc; + input = acc; + if (++lp_allp2_idx >= sizeof(lp_allp2_buf)/sizeof(float32_t)) lp_allp2_idx = 0; + acc = lp_dly2_buf[lp_dly2_idx]; // read the end of the delay + lp_dly2_buf[lp_dly2_idx] = input; // write new sample + input = acc; + if (++lp_dly2_idx >= sizeof(lp_dly2_buf)/sizeof(float32_t)) lp_dly2_idx = 0; // update index + // hi/lo shelving filter + temp1 = input - lpf2; + lpf2 += temp1 * lp_lowpass_f; + temp2 = input - lpf2; + temp1 = lpf2 - hpf2; + hpf2 += temp1 * lp_hipass_f; + acc = lpf2 + temp2*lp_hidamp_k + hpf2*lp_lodamp_k; + acc = acc * rv_time * rv_time_scaler; + + input = acc + in_allp_out_R; + + acc = lp_allp3_buf[lp_allp3_idx] + input * loop_allp_k; + lp_allp3_buf[lp_allp3_idx] = input - loop_allp_k * acc; + input = acc; + if (++lp_allp3_idx >= sizeof(lp_allp3_buf)/sizeof(float32_t)) lp_allp3_idx = 0; + acc = lp_dly3_buf[lp_dly3_idx]; // read the end of the delay + lp_dly3_buf[lp_dly3_idx] = input; // write new sample + input = acc; + if (++lp_dly3_idx >= sizeof(lp_dly3_buf)/sizeof(float32_t)) lp_dly3_idx = 0; // update index + // hi/lo shelving filter + temp1 = input - lpf3; + lpf3 += temp1 * lp_lowpass_f; + temp2 = input - lpf3; + temp1 = lpf3 - hpf3; + hpf3 += temp1 * lp_hipass_f; + acc = lpf3 + temp2*lp_hidamp_k + hpf3*lp_lodamp_k; + acc = acc * rv_time * rv_time_scaler; + + input = acc + in_allp_out_L; + + acc = lp_allp4_buf[lp_allp4_idx] + input * loop_allp_k; + lp_allp4_buf[lp_allp4_idx] = input - loop_allp_k * acc; + input = acc; + if (++lp_allp4_idx >= sizeof(lp_allp4_buf)/sizeof(float32_t)) lp_allp4_idx = 0; + acc = lp_dly4_buf[lp_dly4_idx]; // read the end of the delay + lp_dly4_buf[lp_dly4_idx] = input; // write new sample + input = acc; + if (++lp_dly4_idx >= sizeof(lp_dly4_buf)/sizeof(float32_t)) lp_dly4_idx= 0; // update index + // hi/lo shelving filter + temp1 = input - lpf4; + lpf4 += temp1 * lp_lowpass_f; + temp2 = input - lpf4; + temp1 = lpf4 - hpf4; + hpf4 += temp1 * lp_hipass_f; + acc = lpf4 + temp2*lp_hidamp_k + hpf4*lp_lodamp_k; + acc = acc * rv_time * rv_time_scaler; + + lp_allp_out = acc; + + // channel L: +#ifdef TAP1_MODULATED + temp16 = (lp_dly1_idx + lp_dly1_offset_L + (lfo1_out_cos>>LFO_FRAC_BITS)) % (sizeof(lp_dly1_buf)/sizeof(float32_t)); + temp1 = lp_dly1_buf[temp16++]; // sample now + if (temp16 >= sizeof(lp_dly1_buf)/sizeof(float32_t)) temp16 = 0; + temp2 = lp_dly1_buf[temp16]; // sample next + input = (float32_t)(lfo1_out_cos & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k + acc = (temp1*(1.0-input) + temp2*input)* 0.8; +#else + temp16 = (lp_dly1_idx + lp_dly1_offset_L) % (sizeof(lp_dly1_buf)/sizeof(float32_t)); + acc = lp_dly1_buf[temp16]* 0.8; +#endif + + +#ifdef TAP2_MODULATED + temp16 = (lp_dly2_idx + lp_dly2_offset_L + (lfo1_out_sin>>LFO_FRAC_BITS)) % (sizeof(lp_dly2_buf)/sizeof(float32_t)); + temp1 = lp_dly2_buf[temp16++]; + if (temp16 >= sizeof(lp_dly2_buf)/sizeof(float32_t)) temp16 = 0; + temp2 = lp_dly2_buf[temp16]; + input = (float32_t)(lfo1_out_sin & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k + acc += (temp1*(1.0-input) + temp2*input)* 0.7; +#else + temp16 = (lp_dly2_idx + lp_dly2_offset_L) % (sizeof(lp_dly2_buf)/sizeof(float32_t)); + acc += (temp1*(1.0-input) + temp2*input)* 0.6; +#endif + + temp16 = (lp_dly3_idx + lp_dly3_offset_L + (lfo2_out_cos>>LFO_FRAC_BITS)) % (sizeof(lp_dly3_buf)/sizeof(float32_t)); + temp1 = lp_dly3_buf[temp16++]; + if (temp16 >= sizeof(lp_dly3_buf)/sizeof(float32_t)) temp16 = 0; + temp2 = lp_dly3_buf[temp16]; + input = (float32_t)(lfo2_out_cos & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k + acc += (temp1*(1.0-input) + temp2*input)* 0.6; + + temp16 = (lp_dly4_idx + lp_dly4_offset_L + (lfo2_out_sin>>LFO_FRAC_BITS)) % (sizeof(lp_dly4_buf)/sizeof(float32_t)); + temp1 = lp_dly4_buf[temp16++]; + if (temp16 >= sizeof(lp_dly4_buf)/sizeof(float32_t)) temp16 = 0; + temp2 = lp_dly4_buf[temp16]; + input = (float32_t)(lfo2_out_sin & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k + acc += (temp1*(1.0-input) + temp2*input)* 0.5; + + // Master lowpass filter + temp1 = acc - master_lowpass_l; + master_lowpass_l += temp1 * master_lowpass_f; + + outblockL->data[i] =(int16_t)(master_lowpass_l * 32767.0); //sat16(output * 30, 0); + + // Channel R + #ifdef TAP1_MODULATED + temp16 = (lp_dly1_idx + lp_dly1_offset_R + (lfo2_out_cos>>LFO_FRAC_BITS)) % (sizeof(lp_dly1_buf)/sizeof(float32_t)); + temp1 = lp_dly1_buf[temp16++]; // sample now + if (temp16 >= sizeof(lp_dly1_buf)/sizeof(float32_t)) temp16 = 0; + temp2 = lp_dly1_buf[temp16]; // sample next + input = (float32_t)(lfo2_out_cos & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k + + acc = (temp1*(1.0-input) + temp2*input)* 0.8; + #else + temp16 = (lp_dly1_idx + lp_dly1_offset_R) % (sizeof(lp_dly1_buf)/sizeof(float32_t)); + acc = lp_dly1_buf[temp16] * 0.8; + #endif +#ifdef TAP2_MODULATED + temp16 = (lp_dly2_idx + lp_dly2_offset_R + (lfo1_out_cos>>LFO_FRAC_BITS)) % (sizeof(lp_dly2_buf)/sizeof(float32_t)); + temp1 = lp_dly2_buf[temp16++]; + if (temp16 >= sizeof(lp_dly2_buf)/sizeof(float32_t)) temp16 = 0; + temp2 = lp_dly2_buf[temp16]; + input = (float32_t)(lfo1_out_cos & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k + acc += (temp1*(1.0-input) + temp2*input)* 0.7; +#else + temp16 = (lp_dly2_idx + lp_dly2_offset_R) % (sizeof(lp_dly2_buf)/sizeof(float32_t)); + acc += (temp1*(1.0-input) + temp2*input)* 0.7; +#endif + temp16 = (lp_dly3_idx + lp_dly3_offset_R + (lfo2_out_sin>>LFO_FRAC_BITS)) % (sizeof(lp_dly3_buf)/sizeof(float32_t)); + temp1 = lp_dly3_buf[temp16++]; + if (temp16 >= sizeof(lp_dly3_buf)/sizeof(float32_t)) temp16 = 0; + temp2 = lp_dly3_buf[temp16]; + input = (float32_t)(lfo2_out_sin & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k + acc += (temp1*(1.0-input) + temp2*input)* 0.6; + + temp16 = (lp_dly4_idx + lp_dly4_offset_R + (lfo1_out_sin>>LFO_FRAC_BITS)) % (sizeof(lp_dly4_buf)/sizeof(float32_t)); + temp1 = lp_dly4_buf[temp16++]; + if (temp16 >= sizeof(lp_dly4_buf)/sizeof(float32_t)) temp16 = 0; + temp2 = lp_dly4_buf[temp16]; + input = (float32_t)(lfo2_out_cos & LFO_FRAC_MASK) / ((float32_t)LFO_FRAC_MASK); // interp. k + acc += (temp1*(1.0-input) + temp2*input)* 0.5; + + // Master lowpass filter + temp1 = acc - master_lowpass_r; + master_lowpass_r += temp1 * master_lowpass_f; + outblockR->data[i] =(int16_t)(master_lowpass_r * 32767.0); + + } + transmit(outblockL, 0); + transmit(outblockR, 1); + release(outblockL); + release(outblockR); + if (blockL != &zeroblock) release((audio_block_t *)blockL); + if (blockR != &zeroblock) release((audio_block_t *)blockR); + +#elif defined(KINETISL) + blockL = receiveReadOnly(0); + if (blockL) release(blockL); + blockR = receiveReadOnly(1); + if (blockR) release(blockR); +#endif +} diff --git a/Hx_PlateReverb/effect_platervbstereo.h b/Hx_PlateReverb/effect_platervbstereo.h new file mode 100644 index 0000000..650d5d2 --- /dev/null +++ b/Hx_PlateReverb/effect_platervbstereo.h @@ -0,0 +1,211 @@ +/* Stereo plate reverb for Teensy 4 + * + * Author: Piotr Zapart + * www.hexefx.com + * + * Copyright (c) 2020 by Piotr Zapart + * + * Permission is hereby granted, free of charge, to any person obtaining a copy + * of this software and associated documentation files (the "Software"), to deal + * in the Software without restriction, including without limitation the rights + * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + * copies of the Software, and to permit persons to whom the Software is + * furnished to do so, subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +/*** + * Algorithm based on plate reverbs developed for SpinSemi FV-1 DSP chip + * + * Allpass + modulated delay line based lush plate reverb + * + * Input parameters are float in range 0.0 to 1.0: + * + * size - reverb time + * hidamp - hi frequency loss in the reverb tail + * lodamp - low frequency loss in the reverb tail + * lowpass - output/master lowpass filter, useful for darkening the reverb sound + * diffusion - lower settings will make the reverb tail more "echoey", optimal value 0.65 + * + */ + + +#ifndef _EFFECT_PLATERVBSTEREO_H +#define _EFFECT_PLATERVBSTEREO_H + +#include +#include "Audio.h" +#include "AudioStream.h" +#include "arm_math.h" + + +// if uncommented will place all the buffers in the DMAMEM section ofd the memory +// works with single instance of the reverb only +#define REVERB_USE_DMAMEM + +/*** + * Loop delay modulation: comment/uncomment to switch sin/cos + * modulation for the 1st or 2nd tap, 3rd tap is always modulated + * more modulation means more chorus type sounding reverb tail + */ +//#define TAP1_MODULATED +#define TAP2_MODULATED + +class AudioEffectPlateReverb : public AudioStream +{ +public: + AudioEffectPlateReverb(); + virtual void update(); + + void size(float n) + { + n = constrain(n, 0.0, 1.0); + n = map (n, 0.0, 1.0, 0.2, rv_time_k_max); + float32_t attn = 0.5 * map(n, 0.0, rv_time_k_max, 0.5, 1.0); + AudioNoInterrupts(); + rv_time_k = n; + input_attn = attn; + AudioInterrupts(); + } + + void hidamp(float n) + { + n = constrain(n, 0.0, 1.0); + AudioNoInterrupts(); + lp_hidamp_k = 1.0 - n; + AudioInterrupts(); + } + + void lodamp(float n) + { + n = constrain(n, 0.0, 1.0); + AudioNoInterrupts(); + lp_lodamp_k = -n; + rv_time_scaler = 1.0 - n * 0.12; // limit the max reverb time, otherwise it will clip + AudioInterrupts(); + } + + void lowpass(float n) + { + n = constrain(n, 0.0, 1.0); + n = map(n, 0.0, 1.0, 0.05, 1.0); + master_lowpass_f = n; + } + + void diffusion(float n) + { + n = constrain(n, 0.0, 1.0); + n = map(n, 0.0, 1.0, 0.005, 0.65); + AudioNoInterrupts(); + in_allp_k = n; + loop_allp_k = n; + AudioInterrupts(); + } + + float32_t get_size(void) {return rv_time_k;} +private: + audio_block_t *inputQueueArray[2]; +#ifndef REVERB_USE_DMAMEM + float32_t input_blockL[AUDIO_BLOCK_SAMPLES]; + float32_t input_blockR[AUDIO_BLOCK_SAMPLES]; +#endif + float32_t input_attn; + + float32_t in_allp_k; // input allpass coeff (default 0.6) +#ifndef REVERB_USE_DMAMEM + float32_t in_allp1_bufL[224]; // input allpass buffers + float32_t in_allp2_bufL[420]; + float32_t in_allp3_bufL[856]; + float32_t in_allp4_bufL[1089]; +#endif + uint16_t in_allp1_idxL; + uint16_t in_allp2_idxL; + uint16_t in_allp3_idxL; + uint16_t in_allp4_idxL; + float32_t in_allp_out_L; // L allpass chain output +#ifndef REVERB_USE_DMAMEM + float32_t in_allp1_bufR[156]; // input allpass buffers + float32_t in_allp2_bufR[520]; + float32_t in_allp3_bufR[956]; + float32_t in_allp4_bufR[1289]; +#endif + uint16_t in_allp1_idxR; + uint16_t in_allp2_idxR; + uint16_t in_allp3_idxR; + uint16_t in_allp4_idxR; + float32_t in_allp_out_R; // R allpass chain output +#ifndef REVERB_USE_DMAMEM + float32_t lp_allp1_buf[2303]; // loop allpass buffers + float32_t lp_allp2_buf[2905]; + float32_t lp_allp3_buf[3175]; + float32_t lp_allp4_buf[2398]; +#endif + uint16_t lp_allp1_idx; + uint16_t lp_allp2_idx; + uint16_t lp_allp3_idx; + uint16_t lp_allp4_idx; + float32_t loop_allp_k; // loop allpass coeff (default 0.6) + float32_t lp_allp_out; +#ifndef REVERB_USE_DMAMEM + float32_t lp_dly1_buf[3423]; + float32_t lp_dly2_buf[4589]; + float32_t lp_dly3_buf[4365]; + float32_t lp_dly4_buf[3698]; +#endif + uint16_t lp_dly1_idx; + uint16_t lp_dly2_idx; + uint16_t lp_dly3_idx; + uint16_t lp_dly4_idx; + + const uint16_t lp_dly1_offset_L = 201; + const uint16_t lp_dly2_offset_L = 145; + const uint16_t lp_dly3_offset_L = 1897; + const uint16_t lp_dly4_offset_L = 280; + + const uint16_t lp_dly1_offset_R = 1897; + const uint16_t lp_dly2_offset_R = 1245; + const uint16_t lp_dly3_offset_R = 487; + const uint16_t lp_dly4_offset_R = 780; + + float32_t lp_hidamp_k; // loop high band damping coeff + float32_t lp_lodamp_k; // loop low baand damping coeff + + float32_t lpf1; // lowpass filters + float32_t lpf2; + float32_t lpf3; + float32_t lpf4; + + float32_t hpf1; // highpass filters + float32_t hpf2; + float32_t hpf3; + float32_t hpf4; + + float32_t lp_lowpass_f; // loop lowpass scaled frequency + float32_t lp_hipass_f; // loop highpass scaled frequency + + float32_t master_lowpass_f; + float32_t master_lowpass_l; + float32_t master_lowpass_r; + + const float32_t rv_time_k_max = 0.95; + float32_t rv_time_k; // reverb time coeff + float32_t rv_time_scaler; // with high lodamp settings lower the max reverb time to avoid clipping + + uint32_t lfo1_phase_acc; // LFO 1 + uint32_t lfo1_adder; + + uint32_t lfo2_phase_acc; // LFO 2 + uint32_t lfo2_adder; +}; + +#endif // _EFFECT_PLATEREV_H diff --git a/README.md b/README.md index da470cc..bd4ef9d 100644 --- a/README.md +++ b/README.md @@ -1,2 +1,50 @@ # t40fx -Teensy4.0 Audio Lib Components +Teensy4.0 Audio Lib Components: + +## Stereo Plate Reverb +--- +Fully stereo in/out reverb component for the standard 16bit Audio library. + +### Connections: +Reverb requires stereo in and out connenctions. +### API: + +```void size(float32_t n);``` +sets the reverb time. Parameter range: 0.0 to 1.0. +Example: +```reverb.size(1.0); // set the reverb time to maximum``` + + +```void lowpass(float32_t n);``` +sets the reverb master lowpass filter. Parameter range: 0.0 to 1.0. +Example: +```reverb.lowpass(0.7); // darken the reverb sound``` + + +```void hidamp(float32_t n);``` +sets the treble loss. Parameter range: 0.0 to 1.0. +Example: +```reverb.hidamp(1.0); // max hi band dampening results in darker sound ``` + + +```void lodamp(float32_t n);``` +sets the bass cut. Parameter range: 0.0 to 1.0. +Example: +```reverb.lodamp(0.5); // cut more bass in the reverb tail to make the sound brighter ``` + +Audio connections used in the exmaple project: +![alt text][pic1] + +### Additional config: + +by default the reverb places it's buffers into OCRAM/DMAMEM region. +Comment out the +```#define REVERB_USE_DMAMEM``` +line in the ```effect_platervbstereo.h``` file to place the variables into the DCTM ram region. +___ + +Copyright 12.2020 by Piotr Zapart +www.hexefx.com + + +[pic1]: effect_platervbstereo/StereoPlateReverb.png "Stereo plate reverb connections" \ No newline at end of file