You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
384 lines
8.5 KiB
384 lines
8.5 KiB
12 years ago
|
import argparse
|
||
|
import struct
|
||
|
import numpy as np
|
||
|
from math import *
|
||
|
|
||
|
samplerate = 44100 * 1
|
||
|
|
||
|
# generate a saw matching the parameters of "fun with sigmoids"
|
||
|
def sawperiod():
|
||
|
result = []
|
||
|
f0 = 63. * 2 * pi / samplerate
|
||
|
for i in range(samplerate / 63):
|
||
|
y = 0
|
||
|
x0 = i * f0
|
||
|
for partial in range(1, 351):
|
||
|
gain = 1.0 / partial
|
||
|
if partial > 300:
|
||
|
gain *= (351 - partial) * (1.0 / (351 - 300))
|
||
|
y += gain * sin(partial * x0)
|
||
|
result.append(y)
|
||
|
return result
|
||
|
|
||
|
def saw(n):
|
||
|
return sawperiod() * (n / (samplerate / 63))
|
||
|
|
||
|
def sinsweep(n):
|
||
|
fmax = 22000 * pi * 2 / samplerate
|
||
|
scale = fmax * .5 / n
|
||
|
return [sin(i * i * scale) for i in range(n)]
|
||
|
|
||
|
def sweep(n):
|
||
|
n2 = n / 2
|
||
|
lamin = log(20 * 2 * pi / samplerate)
|
||
|
lamax = log(14000 * 2 * pi / samplerate)
|
||
|
result = []
|
||
|
slope = (lamax - lamin) / n2
|
||
|
for i in range(n2):
|
||
|
a = exp(lamin + slope * i)
|
||
|
result.append(a)
|
||
|
return result + result[-1::-1]
|
||
|
|
||
|
# Based on code by mystran (Teemu Voipio)
|
||
|
# See http://www.kvraudio.com/forum/viewtopic.php?t=349859
|
||
|
|
||
|
def tanhXdx(x):
|
||
|
a = x * x
|
||
|
return ((a + 105.0)* a + 945.0) / ((15.0 * a + 420.0) * a + 945.0)
|
||
|
|
||
|
def tpt_nl(xs, aas, k):
|
||
|
z1 = 0
|
||
|
s = [0] * 4
|
||
|
r = k
|
||
|
result = []
|
||
|
for i in range(len(xs)):
|
||
|
xin = xs[i]
|
||
|
a = aas[i]
|
||
|
f = tan(a * .5)
|
||
|
ih = .5 * (xin + z1)
|
||
|
z1 = xin
|
||
|
|
||
|
t0 = tanhXdx(ih - r * s[3])
|
||
|
t1 = tanhXdx(s[0])
|
||
|
t2 = tanhXdx(s[1])
|
||
|
t3 = tanhXdx(s[2])
|
||
|
t4 = tanhXdx(s[3])
|
||
|
g0 = 1 / (1 + f * t1)
|
||
|
g1 = 1 / (1 + f * t2)
|
||
|
g2 = 1 / (1 + f * t3)
|
||
|
g3 = 1 / (1 + f * t4)
|
||
|
f3 = f * t3 * g3
|
||
|
f2 = f * t2 * g2 * f3
|
||
|
f1 = f * t1 * g1 * f2
|
||
|
f0 = f * t0 * g0 * f1
|
||
|
y3 = (g3*s[3] + f3*g2*s[2] + f2*g1*s[1] + f1*g0*s[0] + f0*xin)/(1 + r * f0)
|
||
|
xx = t0 * (xin - r * y3)
|
||
|
y0 = t1 * g0 * (s[0] + f * xx)
|
||
|
y1 = t2 * g1 * (s[1] + f * y0)
|
||
|
y2 = t3 * g2 * (s[2] + f * y1)
|
||
|
s[0] += 2 * f * (xx - y0)
|
||
|
s[1] += 2 * f * (y0 - y1)
|
||
|
s[2] += 2 * f * (y1 - y2)
|
||
|
s[3] += 2 * f * (y2 - t4 * y3)
|
||
|
result.append(y3)
|
||
|
return result
|
||
|
|
||
|
def antti_nl(xs, aas, k, tanhfunc = tanh):
|
||
|
y0 = 0
|
||
|
y1 = 0
|
||
|
y2 = 0
|
||
|
y3 = 0
|
||
|
ty0 = 0
|
||
|
ty1 = 0
|
||
|
ty2 = 0
|
||
|
ty3 = 0
|
||
|
yy = 0
|
||
|
result = []
|
||
|
for i in range(len(xs)):
|
||
|
xin = xs[i]
|
||
|
a = aas[i]
|
||
|
tx = tanhfunc(xin - k * (y3 + yy) * .5)
|
||
|
y0 += a * (tx - ty0)
|
||
|
yy = y3
|
||
|
ty0 = tanhfunc(y0)
|
||
|
y1 += a * (ty0 - ty1)
|
||
|
ty1 = tanhfunc(y1)
|
||
|
y2 += a * (ty1 - ty2)
|
||
|
ty2 = tanhfunc(y2)
|
||
|
y3 += a * (ty2 - ty3)
|
||
|
ty3 = tanhfunc(y3)
|
||
|
x = 0
|
||
|
result.append(y3)
|
||
|
return result
|
||
|
|
||
|
def expm_series(A, n = 16):
|
||
|
B = np.identity(len(A))
|
||
|
C = np.identity(len(A))
|
||
|
for i in range(1, n):
|
||
|
C = A * C / i
|
||
|
B = B + C
|
||
|
return B
|
||
|
|
||
|
def expm_hyb(A, n1 = 8, n2 = 8):
|
||
|
A = expm_series(A / (1 << n2), n1)
|
||
|
for i in range(n2):
|
||
|
A = A * A
|
||
|
return A
|
||
|
|
||
|
def mkjacobian(a, k):
|
||
|
return np.matrix([[0, 0, 0, 0, 0],
|
||
|
[a, -a, 0, 0, -k * a],
|
||
|
[0, a, -a, 0, 0],
|
||
|
[0, 0, a, -a, 0],
|
||
|
[0, 0, 0, a, -a]])
|
||
|
|
||
|
def expm_nl(xs, aas, k, tanhfunc = tanh, every = 64):
|
||
|
kk = k
|
||
|
y = np.zeros([4, 1])
|
||
|
ty = y
|
||
|
result = []
|
||
|
for i in range(len(xs)):
|
||
|
if i % every == 0:
|
||
|
a = aas[i]
|
||
|
A = expm_hyb(mkjacobian(a, k))
|
||
|
|
||
|
B = A[1:, 0]
|
||
|
A = A[1:, 1:]
|
||
|
AM = A - np.identity(4)
|
||
|
|
||
|
for j in range(4):
|
||
|
AM[j, 3] += B[j, 0] * kk
|
||
|
|
||
|
x = xs[i]
|
||
|
tx = tanhfunc(x - kk * y[3, 0])
|
||
|
y += B * tx + AM * ty
|
||
|
ty = np.matrix([tanhfunc(x[0]) for x in y]).T
|
||
|
|
||
|
result.append(y[3, 0])
|
||
|
return result
|
||
|
|
||
|
def invsqrt(x):
|
||
|
return x / sqrt(1 + x ** 2)
|
||
|
|
||
|
def clip(x):
|
||
|
return min(1, max(-1, x))
|
||
|
|
||
|
fir = map(float, '''-0.00000152158394097619
|
||
|
-0.00000932875737718674
|
||
|
-0.00001008290833020705
|
||
|
0.00000728628960094510
|
||
|
0.00002272556429291851
|
||
|
-0.00000017886444625648
|
||
|
-0.00004038828866646377
|
||
|
-0.00002127235603321839
|
||
|
0.00005623314602326363
|
||
|
0.00006233931357689778
|
||
|
-0.00005884569707596701
|
||
|
-0.00012410666372671377
|
||
|
0.00003231781361429016
|
||
|
0.00019973378481126099
|
||
|
0.00004097428652472217
|
||
|
-0.00027125558280978066
|
||
|
-0.00017513777576291543
|
||
|
0.00030833229435342778
|
||
|
0.00037363561338823163
|
||
|
-0.00027028256701905416
|
||
|
-0.00062153272838533420
|
||
|
0.00011242294792251808
|
||
|
0.00087909017443692499
|
||
|
0.00020309303892565388
|
||
|
-0.00107928469499717137
|
||
|
-0.00069305675670084180
|
||
|
0.00113148992142813524
|
||
|
0.00133794323705832747
|
||
|
-0.00093286682198106608
|
||
|
-0.00206892788224323455
|
||
|
0.00038777937772768273
|
||
|
0.00276141532345176117
|
||
|
0.00056670689248167661
|
||
|
-0.00323852878331680298
|
||
|
-0.00193259906597622396
|
||
|
0.00328731491441583683
|
||
|
0.00362542589345449945
|
||
|
-0.00268785554870503091
|
||
|
-0.00545702740033716938
|
||
|
0.00125317559909794512
|
||
|
0.00713205061850966104
|
||
|
0.00112492149537589880
|
||
|
-0.00826148096867550946
|
||
|
-0.00443085208574918715
|
||
|
0.00839336065985300112
|
||
|
0.00848839486761648020
|
||
|
-0.00705662837862476577
|
||
|
-0.01293781936476604867
|
||
|
0.00380913247729417143
|
||
|
0.01722862947876550518
|
||
|
0.00172513205576642695
|
||
|
-0.02062091118580804822
|
||
|
-0.00985374287540894019
|
||
|
0.02217056516274141381
|
||
|
0.02089533076058044253
|
||
|
-0.02062760756367006815
|
||
|
-0.03546365160613443313
|
||
|
0.01401630243169032369
|
||
|
0.05541063386809867708
|
||
|
0.00212045427486363437
|
||
|
-0.08794052708207862612
|
||
|
-0.04526389505656687462
|
||
|
0.18221762668014460096
|
||
|
0.41075960732889965632
|
||
|
0.41075960732889965632
|
||
|
0.18221762668014460096
|
||
|
-0.04526389505656687462
|
||
|
-0.08794052708207862612
|
||
|
0.00212045427486363437
|
||
|
0.05541063386809867708
|
||
|
0.01401630243169032369
|
||
|
-0.03546365160613443313
|
||
|
-0.02062760756367006815
|
||
|
0.02089533076058044253
|
||
|
0.02217056516274141381
|
||
|
-0.00985374287540894019
|
||
|
-0.02062091118580804822
|
||
|
0.00172513205576642695
|
||
|
0.01722862947876550518
|
||
|
0.00380913247729417143
|
||
|
-0.01293781936476604867
|
||
|
-0.00705662837862476577
|
||
|
0.00848839486761648020
|
||
|
0.00839336065985300112
|
||
|
-0.00443085208574918715
|
||
|
-0.00826148096867550946
|
||
|
0.00112492149537589880
|
||
|
0.00713205061850966104
|
||
|
0.00125317559909794512
|
||
|
-0.00545702740033716938
|
||
|
-0.00268785554870503091
|
||
|
0.00362542589345449945
|
||
|
0.00328731491441583683
|
||
|
-0.00193259906597622396
|
||
|
-0.00323852878331680298
|
||
|
0.00056670689248167661
|
||
|
0.00276141532345176117
|
||
|
0.00038777937772768273
|
||
|
-0.00206892788224323455
|
||
|
-0.00093286682198106608
|
||
|
0.00133794323705832747
|
||
|
0.00113148992142813524
|
||
|
-0.00069305675670084180
|
||
|
-0.00107928469499717137
|
||
|
0.00020309303892565388
|
||
|
0.00087909017443692499
|
||
|
0.00011242294792251808
|
||
|
-0.00062153272838533420
|
||
|
-0.00027028256701905416
|
||
|
0.00037363561338823163
|
||
|
0.00030833229435342778
|
||
|
-0.00017513777576291543
|
||
|
-0.00027125558280978066
|
||
|
0.00004097428652472217
|
||
|
0.00019973378481126099
|
||
|
0.00003231781361429016
|
||
|
-0.00012410666372671377
|
||
|
-0.00005884569707596701
|
||
|
0.00006233931357689778
|
||
|
0.00005623314602326363
|
||
|
-0.00002127235603321839
|
||
|
-0.00004038828866646377
|
||
|
-0.00000017886444625648
|
||
|
0.00002272556429291851
|
||
|
0.00000728628960094510
|
||
|
-0.00001008290833020705
|
||
|
-0.00000932875737718674
|
||
|
-0.00000152158394097619
|
||
|
'''.split())
|
||
|
|
||
|
fir_n = len(fir)
|
||
|
|
||
|
# would probably be faster to use numpy.convolve and slice, but oh well
|
||
|
def downsample(data):
|
||
|
result = []
|
||
|
buf = [0] * fir_n
|
||
|
i = 0
|
||
|
for x in data:
|
||
|
buf[i] = x
|
||
|
i = (i + 1) & (fir_n - 1)
|
||
|
if (i & 1) == 0:
|
||
|
y = 0
|
||
|
for j in range(len(fir)):
|
||
|
y += fir[j] * buf[(i + j) & (fir_n - 1)]
|
||
|
result.append(y)
|
||
|
return result
|
||
|
|
||
|
def wavwrite(seq, fn, sr = 44100):
|
||
|
f = file(fn, 'wb')
|
||
|
n_samples = len(seq)
|
||
|
f.write(struct.pack('<4sI4s4sIHHIIHH4sI',
|
||
|
'RIFF',
|
||
|
36 + 2 * n_samples,
|
||
|
'WAVE',
|
||
|
'fmt ',
|
||
|
16,
|
||
|
1, 1,
|
||
|
sr,
|
||
|
2 * sr,
|
||
|
2, 16,
|
||
|
'data',
|
||
|
2 * n_samples))
|
||
|
for x in seq:
|
||
|
f.write(struct.pack('<h', min(32767, max(-32767, int(16384 * x)))))
|
||
|
|
||
|
def main():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("--oversample", help="oversample factor")
|
||
|
parser.add_argument("--signal", help="saw or sinsweep")
|
||
|
parser.add_argument("--k", help="resonance, 4 = oscillate")
|
||
|
parser.add_argument("--filter", help="tpt, antti, or expm")
|
||
|
parser.add_argument("--tanhfunc", help="tanh or invsqrt")
|
||
|
parser.add_argument("--cutoff")
|
||
|
parser.add_argument("--gain", help="gain in dB")
|
||
|
parser.add_argument("--ogain", help="outputgain in dB")
|
||
|
parser.add_argument("--out", help="output wav file")
|
||
|
args = parser.parse_args()
|
||
|
oversample = 1
|
||
|
if args.oversample:
|
||
|
oversample = int(args.oversample)
|
||
|
k = 0
|
||
|
if args.k:
|
||
|
k = float(args.k)
|
||
|
signal = 'saw'
|
||
|
if args.signal:
|
||
|
signal = args.signal
|
||
|
global samplerate
|
||
|
samplerate *= oversample
|
||
|
n = 6 * samplerate
|
||
|
if signal == 'saw':
|
||
|
input = saw(n)
|
||
|
aas = sweep(n)
|
||
|
elif signal == 'sinsweep':
|
||
|
input = sinsweep(n)
|
||
|
aas = [1000./samplerate * 2 * pi] * n
|
||
|
gain = 1
|
||
|
if args.gain:
|
||
|
gain = 10 ** (float(args.gain)/20)
|
||
|
input = [y * gain for y in input]
|
||
|
tanhfunc = tanh
|
||
|
if args.tanhfunc == 'invsqrt':
|
||
|
tanhfunc = invsqrt
|
||
|
if args.filter == 'tpt':
|
||
|
result = tpt_nl(input, aas, k)
|
||
|
elif args.filter == 'antti':
|
||
|
result = antti_nl(input, aas, k, tanhfunc = tanhfunc)
|
||
|
else:
|
||
|
result = expm_nl(input, aas, k, tanhfunc = tanhfunc)
|
||
|
while oversample > 1:
|
||
|
result = downsample(result)
|
||
|
oversample /= 2
|
||
|
ogain = 1
|
||
|
if args.ogain:
|
||
|
ogain = 10 ** (float(args.ogain)/20)
|
||
|
if args.out:
|
||
|
wavwrite(result, args.out)
|
||
|
|
||
|
main()
|