mirror of https://github.com/jeelabs/esp-link.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Jeroen Domburg
d739c2d808
|
10 years ago | |
---|---|---|
espfstest | 10 years ago | |
html | 10 years ago | |
include | 10 years ago | |
lib | 10 years ago | |
mkespfsimage | 10 years ago | |
user | 10 years ago | |
.gitignore | 10 years ago | |
.gitmodules | 10 years ago | |
Makefile | 10 years ago | |
README | 10 years ago |
README
esp-httpd README
This is a small but powerful webserver for ESP8266(EX) chips. Included is an example of how
to make a module that can have the AP it connects to configured over a webbrowser.
ABOUT THE WEBSERVER
The Good (aka: what's awesome)
- Supports multiple connections, for eg simultaneous html/css/js/images downloading
- Static files stored in flash, in an (optionally compressed) RO filesystem
- Pluggable using external cgi routines
- Simple template engine for mixed c and html things
The Bad (aka: what can be improved)
- Not built for speediness, although it's reasonable fast.
- Built according to what I remember of the HTTP protocol, not according to the
RFCs. Should work with most modern browsers, though.
- No support for authentication or https.
The Ugly (aka: bugs, misbehaviour)
- Possible buffer overflows (usually not remotely exploitable) due to no os_snprintf
This can be theoretically remedied by either Espressif including an os_snprintf in
their libs or by using some alternate printf lib, like elm-chans xprintf
ABOUT THE EXAMPLE
When you flash the example into an ESP8266(EX) module, you get a small webserver with a few example
pages. If you've already connected your module to your WLAN before, it'll keep those settings. When
you haven't or the settings are wrong, keep GPIO0 for >5 seconds. The module will reboot into
its STA+AP mode. Connect a computer to the newly formed access point and browse to
http://192.168.4.1/wifi in order to connect the module to your WiFi network. The example also
allows you to control a LED that's connected to GPIO2.
BUILDING EVERYTHING
For this, you need an environment that can compile ESP8266 firmware. Environments for this still
are in flux at the moment, but I'm using a crosstool-ng gcc setup combined with the libs & includes
from the ESP SDK and ESP VM. You probably also need an UNIX-slike system; I'm working on
Debian Linux myself.
To manage the paths to all this, you can source a small shell fragment into your current session. For
example, I source a file with these contents:
export PATH=${PWD}/crosstool-NG/builds/xtensa-lx106-elf/bin:$PATH
export XTENSA_TOOLS_ROOT=${PWD}/crosstool-NG/builds/xtensa-lx106-elf/bin
export SDK_BASE=${PWD}/esp_iot_sdk_v0.9.2/
export SDK_EXTRA_INCLUDES=${PWD}/esp_iot_sdk_novm_unpacked/usr/xtensa/XtDevTools/install/builds/RC-2010.1-win32/lx106/xtensa-elf/include/
export ESPTOOL=${PWD}/esptool/esptool.py
export ESPPORT=/dev/ttyUSB0
Actual setup of the SDK and toolchain is out of the scope of this document, so I hope this helps you
enough to set up your own if you haven't already.
If you have that, you can clone out the source code:
git clone http://git.spritesserver.nl/esphttpd.git/
This project makes use of heatshrink, which is a git submodule. To fetch the code:
cd esphttpd
git submodule init
git submodule update
Now, build the code:
make
Flash the code happens in 2 steps. First the code itself gets flashed. Reset the module into bootloader
mode and enter 'make flash'. You may want to reset and re-enter the bootloader halfway (at 'sleep 3') for
the 2nd part of this flash to work.
The 2nd step is to pack the static files the webserver will serve and flash that. Reset the module into
bootloader mode again and enter 'make htmlflash'.
You should have a working webserver now.
WRITING CODE FOR THE WEBSERVER
...errm... to be done. For now, look at the examples. Hey, you probably managed to find out how
the SDK works, this shouldn't be too hard :P