You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
dexed/JuceLibraryCode/modules/juce_audio_basics/effects/juce_LagrangeInterpolator.h

94 lines
3.9 KiB

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2015 - ROLI Ltd.
Permission is granted to use this software under the terms of either:
a) the GPL v2 (or any later version)
b) the Affero GPL v3
Details of these licenses can be found at: www.gnu.org/licenses
JUCE is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
------------------------------------------------------------------------------
To release a closed-source product which uses JUCE, commercial licenses are
available: visit www.juce.com for more information.
==============================================================================
*/
#ifndef JUCE_LAGRANGEINTERPOLATOR_H_INCLUDED
#define JUCE_LAGRANGEINTERPOLATOR_H_INCLUDED
//==============================================================================
/**
Interpolator for resampling a stream of floats using 4-point lagrange interpolation.
Note that the resampler is stateful, so when there's a break in the continuity
of the input stream you're feeding it, you should call reset() before feeding
it any new data. And like with any other stateful filter, if you're resampling
multiple channels, make sure each one uses its own LagrangeInterpolator
object.
*/
class JUCE_API LagrangeInterpolator
{
public:
LagrangeInterpolator();
~LagrangeInterpolator();
/** Resets the state of the interpolator.
Call this when there's a break in the continuity of the input data stream.
*/
void reset() noexcept;
/** Resamples a stream of samples.
@param speedRatio the number of input samples to use for each output sample
@param inputSamples the source data to read from. This must contain at
least (speedRatio * numOutputSamplesToProduce) samples.
@param outputSamples the buffer to write the results into
@param numOutputSamplesToProduce the number of output samples that should be created
@returns the actual number of input samples that were used
*/
int process (double speedRatio,
const float* inputSamples,
float* outputSamples,
int numOutputSamplesToProduce) noexcept;
/** Resamples a stream of samples, adding the results to the output data
with a gain.
@param speedRatio the number of input samples to use for each output sample
@param inputSamples the source data to read from. This must contain at
least (speedRatio * numOutputSamplesToProduce) samples.
@param outputSamples the buffer to write the results to - the result values will be added
to any pre-existing data in this buffer after being multiplied by
the gain factor
@param numOutputSamplesToProduce the number of output samples that should be created
@param gain a gain factor to multiply the resulting samples by before
adding them to the destination buffer
@returns the actual number of input samples that were used
*/
int processAdding (double speedRatio,
const float* inputSamples,
float* outputSamples,
int numOutputSamplesToProduce,
float gain) noexcept;
private:
float lastInputSamples[5];
double subSamplePos;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (LagrangeInterpolator)
};
#endif // JUCE_LAGRANGEINTERPOLATOR_H_INCLUDED