You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
dexed/JuceLibraryCode/modules/juce_audio_devices/audio_io/juce_AudioDeviceManager.h

510 lines
22 KiB

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2013 - Raw Material Software Ltd.
Permission is granted to use this software under the terms of either:
a) the GPL v2 (or any later version)
b) the Affero GPL v3
Details of these licenses can be found at: www.gnu.org/licenses
JUCE is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
------------------------------------------------------------------------------
To release a closed-source product which uses JUCE, commercial licenses are
available: visit www.juce.com for more information.
==============================================================================
*/
#ifndef JUCE_AUDIODEVICEMANAGER_H_INCLUDED
#define JUCE_AUDIODEVICEMANAGER_H_INCLUDED
//==============================================================================
/**
Manages the state of some audio and midi i/o devices.
This class keeps tracks of a currently-selected audio device, through
with which it continuously streams data from an audio callback, as well as
one or more midi inputs.
The idea is that your application will create one global instance of this object,
and let it take care of creating and deleting specific types of audio devices
internally. So when the device is changed, your callbacks will just keep running
without having to worry about this.
The manager can save and reload all of its device settings as XML, which
makes it very easy for you to save and reload the audio setup of your
application.
And to make it easy to let the user change its settings, there's a component
to do just that - the AudioDeviceSelectorComponent class, which contains a set of
device selection/sample-rate/latency controls.
To use an AudioDeviceManager, create one, and use initialise() to set it up. Then
call addAudioCallback() to register your audio callback with it, and use that to process
your audio data.
The manager also acts as a handy hub for incoming midi messages, allowing a
listener to register for messages from either a specific midi device, or from whatever
the current default midi input device is. The listener then doesn't have to worry about
re-registering with different midi devices if they are changed or deleted.
And yet another neat trick is that amount of CPU time being used is measured and
available with the getCpuUsage() method.
The AudioDeviceManager is a ChangeBroadcaster, and will send a change message to
listeners whenever one of its settings is changed.
@see AudioDeviceSelectorComponent, AudioIODevice, AudioIODeviceType
*/
class JUCE_API AudioDeviceManager : public ChangeBroadcaster
{
public:
//==============================================================================
/** Creates a default AudioDeviceManager.
Initially no audio device will be selected. You should call the initialise() method
and register an audio callback with setAudioCallback() before it'll be able to
actually make any noise.
*/
AudioDeviceManager();
/** Destructor. */
~AudioDeviceManager();
//==============================================================================
/**
This structure holds a set of properties describing the current audio setup.
An AudioDeviceManager uses this class to save/load its current settings, and to
specify your preferred options when opening a device.
@see AudioDeviceManager::setAudioDeviceSetup(), AudioDeviceManager::initialise()
*/
struct JUCE_API AudioDeviceSetup
{
/** Creates an AudioDeviceSetup object.
The default constructor sets all the member variables to indicate default values.
You can then fill-in any values you want to before passing the object to
AudioDeviceManager::initialise().
*/
AudioDeviceSetup();
bool operator== (const AudioDeviceSetup& other) const;
/** The name of the audio device used for output.
The name has to be one of the ones listed by the AudioDeviceManager's currently
selected device type.
This may be the same as the input device.
An empty string indicates the default device.
*/
String outputDeviceName;
/** The name of the audio device used for input.
This may be the same as the output device.
An empty string indicates the default device.
*/
String inputDeviceName;
/** The current sample rate.
This rate is used for both the input and output devices.
A value of 0 indicates that you don't care what rate is used, and the
device will choose a sensible rate for you.
*/
double sampleRate;
/** The buffer size, in samples.
This buffer size is used for both the input and output devices.
A value of 0 indicates the default buffer size.
*/
int bufferSize;
/** The set of active input channels.
The bits that are set in this array indicate the channels of the
input device that are active.
If useDefaultInputChannels is true, this value is ignored.
*/
BigInteger inputChannels;
/** If this is true, it indicates that the inputChannels array
should be ignored, and instead, the device's default channels
should be used.
*/
bool useDefaultInputChannels;
/** The set of active output channels.
The bits that are set in this array indicate the channels of the
input device that are active.
If useDefaultOutputChannels is true, this value is ignored.
*/
BigInteger outputChannels;
/** If this is true, it indicates that the outputChannels array
should be ignored, and instead, the device's default channels
should be used.
*/
bool useDefaultOutputChannels;
};
//==============================================================================
/** Opens a set of audio devices ready for use.
This will attempt to open either a default audio device, or one that was
previously saved as XML.
@param numInputChannelsNeeded the maximum number of input channels your app would like to
use (the actual number of channels opened may be less than
the number requested)
@param numOutputChannelsNeeded the maximum number of output channels your app would like to
use (the actual number of channels opened may be less than
the number requested)
@param savedState either a previously-saved state that was produced
by createStateXml(), or nullptr if you want the manager
to choose the best device to open.
@param selectDefaultDeviceOnFailure if true, then if the device specified in the XML
fails to open, then a default device will be used
instead. If false, then on failure, no device is
opened.
@param preferredDefaultDeviceName if this is not empty, and there's a device with this
name, then that will be used as the default device
(assuming that there wasn't one specified in the XML).
The string can actually be a simple wildcard, containing "*"
and "?" characters
@param preferredSetupOptions if this is non-null, the structure will be used as the
set of preferred settings when opening the device. If you
use this parameter, the preferredDefaultDeviceName
field will be ignored
@returns an error message if anything went wrong, or an empty string if it worked ok.
*/
String initialise (int numInputChannelsNeeded,
int numOutputChannelsNeeded,
const XmlElement* savedState,
bool selectDefaultDeviceOnFailure,
const String& preferredDefaultDeviceName = String(),
const AudioDeviceSetup* preferredSetupOptions = 0);
/** Returns some XML representing the current state of the manager.
This stores the current device, its samplerate, block size, etc, and
can be restored later with initialise().
Note that this can return a null pointer if no settings have been explicitly changed
(i.e. if the device manager has just been left in its default state).
*/
XmlElement* createStateXml() const;
//==============================================================================
/** Returns the current device properties that are in use.
@see setAudioDeviceSetup
*/
void getAudioDeviceSetup (AudioDeviceSetup& setup);
/** Changes the current device or its settings.
If you want to change a device property, like the current sample rate or
block size, you can call getAudioDeviceSetup() to retrieve the current
settings, then tweak the appropriate fields in the AudioDeviceSetup structure,
and pass it back into this method to apply the new settings.
@param newSetup the settings that you'd like to use
@param treatAsChosenDevice if this is true and if the device opens correctly, these new
settings will be taken as having been explicitly chosen by the
user, and the next time createStateXml() is called, these settings
will be returned. If it's false, then the device is treated as a
temporary or default device, and a call to createStateXml() will
return either the last settings that were made with treatAsChosenDevice
as true, or the last XML settings that were passed into initialise().
@returns an error message if anything went wrong, or an empty string if it worked ok.
@see getAudioDeviceSetup
*/
String setAudioDeviceSetup (const AudioDeviceSetup& newSetup,
bool treatAsChosenDevice);
/** Returns the currently-active audio device. */
AudioIODevice* getCurrentAudioDevice() const noexcept { return currentAudioDevice; }
/** Returns the type of audio device currently in use.
@see setCurrentAudioDeviceType
*/
String getCurrentAudioDeviceType() const { return currentDeviceType; }
/** Returns the currently active audio device type object.
Don't keep a copy of this pointer - it's owned by the device manager and could
change at any time.
*/
AudioIODeviceType* getCurrentDeviceTypeObject() const;
/** Changes the class of audio device being used.
This switches between, e.g. ASIO and DirectSound. On the Mac you probably won't ever call
this because there's only one type: CoreAudio.
For a list of types, see getAvailableDeviceTypes().
*/
void setCurrentAudioDeviceType (const String& type,
bool treatAsChosenDevice);
/** Closes the currently-open device.
You can call restartLastAudioDevice() later to reopen it in the same state
that it was just in.
*/
void closeAudioDevice();
/** Tries to reload the last audio device that was running.
Note that this only reloads the last device that was running before
closeAudioDevice() was called - it doesn't reload any kind of saved-state,
and can only be called after a device has been opened with SetAudioDevice().
If a device is already open, this call will do nothing.
*/
void restartLastAudioDevice();
//==============================================================================
/** Registers an audio callback to be used.
The manager will redirect callbacks from whatever audio device is currently
in use to all registered callback objects. If more than one callback is
active, they will all be given the same input data, and their outputs will
be summed.
If necessary, this method will invoke audioDeviceAboutToStart() on the callback
object before returning.
To remove a callback, use removeAudioCallback().
*/
void addAudioCallback (AudioIODeviceCallback* newCallback);
/** Deregisters a previously added callback.
If necessary, this method will invoke audioDeviceStopped() on the callback
object before returning.
@see addAudioCallback
*/
void removeAudioCallback (AudioIODeviceCallback* callback);
//==============================================================================
/** Returns the average proportion of available CPU being spent inside the audio callbacks.
Returns a value between 0 and 1.0
*/
double getCpuUsage() const;
//==============================================================================
/** Enables or disables a midi input device.
The list of devices can be obtained with the MidiInput::getDevices() method.
Any incoming messages from enabled input devices will be forwarded on to all the
listeners that have been registered with the addMidiInputCallback() method. They
can either register for messages from a particular device, or from just the
"default" midi input.
Routing the midi input via an AudioDeviceManager means that when a listener
registers for the default midi input, this default device can be changed by the
manager without the listeners having to know about it or re-register.
It also means that a listener can stay registered for a midi input that is disabled
or not present, so that when the input is re-enabled, the listener will start
receiving messages again.
@see addMidiInputCallback, isMidiInputEnabled
*/
void setMidiInputEnabled (const String& midiInputDeviceName, bool enabled);
/** Returns true if a given midi input device is being used.
@see setMidiInputEnabled
*/
bool isMidiInputEnabled (const String& midiInputDeviceName) const;
/** Registers a listener for callbacks when midi events arrive from a midi input.
The device name can be empty to indicate that it wants events from whatever the
current "default" device is. Or it can be the name of one of the midi input devices
(see MidiInput::getDevices() for the names).
Only devices which are enabled (see the setMidiInputEnabled() method) will have their
events forwarded on to listeners.
*/
void addMidiInputCallback (const String& midiInputDeviceName,
MidiInputCallback* callback);
/** Removes a listener that was previously registered with addMidiInputCallback().
*/
void removeMidiInputCallback (const String& midiInputDeviceName,
MidiInputCallback* callback);
//==============================================================================
/** Sets a midi output device to use as the default.
The list of devices can be obtained with the MidiOutput::getDevices() method.
The specified device will be opened automatically and can be retrieved with the
getDefaultMidiOutput() method.
Pass in an empty string to deselect all devices. For the default device, you
can use MidiOutput::getDevices() [MidiOutput::getDefaultDeviceIndex()].
@see getDefaultMidiOutput, getDefaultMidiOutputName
*/
void setDefaultMidiOutput (const String& deviceName);
/** Returns the name of the default midi output.
@see setDefaultMidiOutput, getDefaultMidiOutput
*/
String getDefaultMidiOutputName() const { return defaultMidiOutputName; }
/** Returns the current default midi output device.
If no device has been selected, or the device can't be opened, this will
return 0.
@see getDefaultMidiOutputName
*/
MidiOutput* getDefaultMidiOutput() const noexcept { return defaultMidiOutput; }
/** Returns a list of the types of device supported.
*/
const OwnedArray <AudioIODeviceType>& getAvailableDeviceTypes();
//==============================================================================
/** Creates a list of available types.
This will add a set of new AudioIODeviceType objects to the specified list, to
represent each available types of device.
You can override this if your app needs to do something specific, like avoid
using DirectSound devices, etc.
*/
virtual void createAudioDeviceTypes (OwnedArray <AudioIODeviceType>& types);
/** Adds a new device type to the list of types.
The manager will take ownership of the object that is passed-in.
*/
void addAudioDeviceType (AudioIODeviceType* newDeviceType);
//==============================================================================
/** Plays a beep through the current audio device.
This is here to allow the audio setup UI panels to easily include a "test"
button so that the user can check where the audio is coming from.
*/
void playTestSound();
/** Turns on level-measuring.
When enabled, the device manager will measure the peak input level
across all channels, and you can get this level by calling getCurrentInputLevel().
This is mainly intended for audio setup UI panels to use to create a mic
level display, so that the user can check that they've selected the right
device.
A simple filter is used to make the level decay smoothly, but this is
only intended for giving rough feedback, and not for any kind of accurate
measurement.
*/
void enableInputLevelMeasurement (bool enableMeasurement);
/** Returns the current input level.
To use this, you must first enable it by calling enableInputLevelMeasurement().
See enableInputLevelMeasurement() for more info.
*/
double getCurrentInputLevel() const;
/** Returns the a lock that can be used to synchronise access to the audio callback.
Obviously while this is locked, you're blocking the audio thread from running, so
it must only be used for very brief periods when absolutely necessary.
*/
CriticalSection& getAudioCallbackLock() noexcept { return audioCallbackLock; }
/** Returns the a lock that can be used to synchronise access to the midi callback.
Obviously while this is locked, you're blocking the midi system from running, so
it must only be used for very brief periods when absolutely necessary.
*/
CriticalSection& getMidiCallbackLock() noexcept { return midiCallbackLock; }
private:
//==============================================================================
OwnedArray <AudioIODeviceType> availableDeviceTypes;
OwnedArray <AudioDeviceSetup> lastDeviceTypeConfigs;
AudioDeviceSetup currentSetup;
ScopedPointer <AudioIODevice> currentAudioDevice;
Array <AudioIODeviceCallback*> callbacks;
int numInputChansNeeded, numOutputChansNeeded;
String currentDeviceType;
BigInteger inputChannels, outputChannels;
ScopedPointer <XmlElement> lastExplicitSettings;
mutable bool listNeedsScanning;
bool useInputNames;
Atomic<int> inputLevelMeasurementEnabledCount;
double inputLevel;
ScopedPointer <AudioSampleBuffer> testSound;
int testSoundPosition;
AudioSampleBuffer tempBuffer;
StringArray midiInsFromXml;
OwnedArray <MidiInput> enabledMidiInputs;
Array <MidiInputCallback*> midiCallbacks;
StringArray midiCallbackDevices;
String defaultMidiOutputName;
ScopedPointer <MidiOutput> defaultMidiOutput;
CriticalSection audioCallbackLock, midiCallbackLock;
double cpuUsageMs, timeToCpuScale;
//==============================================================================
class CallbackHandler;
friend class CallbackHandler;
friend struct ContainerDeletePolicy<CallbackHandler>;
ScopedPointer<CallbackHandler> callbackHandler;
void audioDeviceIOCallbackInt (const float** inputChannelData, int totalNumInputChannels,
float** outputChannelData, int totalNumOutputChannels, int numSamples);
void audioDeviceAboutToStartInt (AudioIODevice*);
void audioDeviceStoppedInt();
void audioDeviceErrorInt (const String&);
void handleIncomingMidiMessageInt (MidiInput*, const MidiMessage&);
void audioDeviceListChanged();
String restartDevice (int blockSizeToUse, double sampleRateToUse,
const BigInteger& ins, const BigInteger& outs);
void stopDevice();
void updateXml();
void createDeviceTypesIfNeeded();
void scanDevicesIfNeeded();
void deleteCurrentDevice();
double chooseBestSampleRate (double preferred) const;
int chooseBestBufferSize (int preferred) const;
void insertDefaultDeviceNames (AudioDeviceSetup&) const;
AudioIODeviceType* findType (const String& inputName, const String& outputName);
AudioIODeviceType* findType (const String& typeName);
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (AudioDeviceManager)
};
#endif // JUCE_AUDIODEVICEMANAGER_H_INCLUDED