You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
dexed/JuceLibraryCode/modules/juce_audio_basics/buffers/juce_FloatVectorOperations.cpp

628 lines
22 KiB

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2013 - Raw Material Software Ltd.
Permission is granted to use this software under the terms of either:
a) the GPL v2 (or any later version)
b) the Affero GPL v3
Details of these licenses can be found at: www.gnu.org/licenses
JUCE is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
------------------------------------------------------------------------------
To release a closed-source product which uses JUCE, commercial licenses are
available: visit www.juce.com for more information.
==============================================================================
*/
namespace FloatVectorHelpers
{
#define JUCE_INCREMENT_SRC_DEST dest += 4; src += 4;
#define JUCE_INCREMENT_DEST dest += 4;
#if JUCE_USE_SSE_INTRINSICS
static bool sse2Present = false;
static bool isSSE2Available() noexcept
{
if (sse2Present)
return true;
sse2Present = SystemStats::hasSSE2();
return sse2Present;
}
inline static bool isAligned (const void* p) noexcept
{
return (((pointer_sized_int) p) & 15) == 0;
}
static inline float findMinimumOrMaximum (const float* src, int num, const bool isMinimum) noexcept
{
const int numLongOps = num / 4;
if (numLongOps > 1 && FloatVectorHelpers::isSSE2Available())
{
__m128 val;
#define JUCE_MINIMUMMAXIMUM_SSE_LOOP(loadOp, minMaxOp) \
val = loadOp (src); \
src += 4; \
for (int i = 1; i < numLongOps; ++i) \
{ \
const __m128 s = loadOp (src); \
val = minMaxOp (val, s); \
src += 4; \
}
if (isMinimum)
{
if (FloatVectorHelpers::isAligned (src)) { JUCE_MINIMUMMAXIMUM_SSE_LOOP (_mm_load_ps, _mm_min_ps) }
else { JUCE_MINIMUMMAXIMUM_SSE_LOOP (_mm_loadu_ps, _mm_min_ps) }
}
else
{
if (FloatVectorHelpers::isAligned (src)) { JUCE_MINIMUMMAXIMUM_SSE_LOOP (_mm_load_ps, _mm_max_ps) }
else { JUCE_MINIMUMMAXIMUM_SSE_LOOP (_mm_loadu_ps,_mm_max_ps) }
}
float localVal;
{
float vals[4];
_mm_storeu_ps (vals, val);
localVal = isMinimum ? jmin (vals[0], vals[1], vals[2], vals[3])
: jmax (vals[0], vals[1], vals[2], vals[3]);
}
num &= 3;
for (int i = 0; i < num; ++i)
localVal = isMinimum ? jmin (localVal, src[i])
: jmax (localVal, src[i]);
return localVal;
}
return isMinimum ? juce::findMinimum (src, num)
: juce::findMaximum (src, num);
}
#define JUCE_BEGIN_SSE_OP \
if (FloatVectorHelpers::isSSE2Available()) \
{ \
const int numLongOps = num / 4;
#define JUCE_FINISH_SSE_OP(normalOp) \
num &= 3; \
if (num == 0) return; \
} \
for (int i = 0; i < num; ++i) normalOp;
#define JUCE_SSE_LOOP(sseOp, srcLoad, dstLoad, dstStore, locals, increment) \
for (int i = 0; i < numLongOps; ++i) \
{ \
locals (srcLoad, dstLoad); \
dstStore (dest, sseOp); \
increment; \
}
#define JUCE_LOAD_NONE(srcLoad, dstLoad)
#define JUCE_LOAD_DEST(srcLoad, dstLoad) const __m128 d = dstLoad (dest);
#define JUCE_LOAD_SRC(srcLoad, dstLoad) const __m128 s = srcLoad (src);
#define JUCE_LOAD_SRC_DEST(srcLoad, dstLoad) const __m128 d = dstLoad (dest); const __m128 s = srcLoad (src);
#define JUCE_PERFORM_SSE_OP_DEST(normalOp, sseOp, locals) \
JUCE_BEGIN_SSE_OP \
if (FloatVectorHelpers::isAligned (dest)) JUCE_SSE_LOOP (sseOp, dummy, _mm_load_ps, _mm_store_ps, locals, JUCE_INCREMENT_DEST) \
else JUCE_SSE_LOOP (sseOp, dummy, _mm_loadu_ps, _mm_storeu_ps, locals, JUCE_INCREMENT_DEST) \
JUCE_FINISH_SSE_OP (normalOp)
#define JUCE_PERFORM_SSE_OP_SRC_DEST(normalOp, sseOp, locals, increment) \
JUCE_BEGIN_SSE_OP \
if (FloatVectorHelpers::isAligned (dest)) \
{ \
if (FloatVectorHelpers::isAligned (src)) JUCE_SSE_LOOP (sseOp, _mm_load_ps, _mm_load_ps, _mm_store_ps, locals, increment) \
else JUCE_SSE_LOOP (sseOp, _mm_loadu_ps, _mm_load_ps, _mm_store_ps, locals, increment) \
}\
else \
{ \
if (FloatVectorHelpers::isAligned (src)) JUCE_SSE_LOOP (sseOp, _mm_load_ps, _mm_loadu_ps, _mm_storeu_ps, locals, increment) \
else JUCE_SSE_LOOP (sseOp, _mm_loadu_ps, _mm_loadu_ps, _mm_storeu_ps, locals, increment) \
} \
JUCE_FINISH_SSE_OP (normalOp)
//==============================================================================
#elif JUCE_USE_ARM_NEON
static inline float findMinimumOrMaximum (const float* src, int num, const bool isMinimum) noexcept
{
const int numLongOps = num / 4;
if (numLongOps > 1)
{
float32x4_t val;
#define JUCE_MINIMUMMAXIMUM_NEON_LOOP(loadOp, minMaxOp) \
val = loadOp (src); \
src += 4; \
for (int i = 1; i < numLongOps; ++i) \
{ \
const float32x4_t s = loadOp (src); \
val = minMaxOp (val, s); \
src += 4; \
}
if (isMinimum) { JUCE_MINIMUMMAXIMUM_NEON_LOOP (vld1q_f32, vminq_f32) }
else { JUCE_MINIMUMMAXIMUM_NEON_LOOP (vld1q_f32, vmaxq_f32) }
float localVal;
{
float vals[4];
vst1q_f32 (vals, val);
localVal = isMinimum ? jmin (vals[0], vals[1], vals[2], vals[3])
: jmax (vals[0], vals[1], vals[2], vals[3]);
}
num &= 3;
for (int i = 0; i < num; ++i)
localVal = isMinimum ? jmin (localVal, src[i])
: jmax (localVal, src[i]);
return localVal;
}
return isMinimum ? juce::findMinimum (src, num)
: juce::findMaximum (src, num);
}
#define JUCE_BEGIN_NEON_OP \
const int numLongOps = num / 4;
#define JUCE_FINISH_NEON_OP(normalOp) \
num &= 3; \
if (num == 0) return; \
for (int i = 0; i < num; ++i) normalOp;
#define JUCE_NEON_LOOP(neonOp, srcLoad, dstLoad, dstStore, locals, increment) \
for (int i = 0; i < numLongOps; ++i) \
{ \
locals (srcLoad, dstLoad); \
dstStore (dest, neonOp); \
increment; \
}
#define JUCE_LOAD_NONE(srcLoad, dstLoad)
#define JUCE_LOAD_DEST(srcLoad, dstLoad) const float32x4_t d = dstLoad (dest);
#define JUCE_LOAD_SRC(srcLoad, dstLoad) const float32x4_t s = srcLoad (src);
#define JUCE_LOAD_SRC_DEST(srcLoad, dstLoad) const float32x4_t d = dstLoad (dest); const float32x4_t s = srcLoad (src);
#define JUCE_PERFORM_NEON_OP_DEST(normalOp, neonOp, locals) \
JUCE_BEGIN_NEON_OP \
JUCE_NEON_LOOP (neonOp, dummy, vld1q_f32, vst1q_f32, locals, JUCE_INCREMENT_DEST) \
JUCE_FINISH_NEON_OP (normalOp)
#define JUCE_PERFORM_NEON_OP_SRC_DEST(normalOp, neonOp, locals) \
JUCE_BEGIN_NEON_OP \
JUCE_NEON_LOOP (neonOp, vld1q_f32, vld1q_f32, vst1q_f32, locals, JUCE_INCREMENT_SRC_DEST) \
JUCE_FINISH_NEON_OP (normalOp)
//==============================================================================
#else
#define JUCE_PERFORM_SSE_OP_DEST(normalOp, unused1, unused2) for (int i = 0; i < num; ++i) normalOp;
#define JUCE_PERFORM_SSE_OP_SRC_DEST(normalOp, sseOp, locals, increment) for (int i = 0; i < num; ++i) normalOp;
#endif
}
//==============================================================================
void JUCE_CALLTYPE FloatVectorOperations::clear (float* dest, int num) noexcept
{
#if JUCE_USE_VDSP_FRAMEWORK
vDSP_vclr (dest, 1, (size_t) num);
#else
zeromem (dest, num * sizeof (float));
#endif
}
void JUCE_CALLTYPE FloatVectorOperations::fill (float* dest, float valueToFill, int num) noexcept
{
#if JUCE_USE_VDSP_FRAMEWORK
vDSP_vfill (&valueToFill, dest, 1, (size_t) num);
#elif JUCE_USE_ARM_NEON
const float32x4_t val = vld1q_dup_f32 (&valueToFill);
JUCE_PERFORM_NEON_OP_DEST (dest[i] = valueToFill, val, JUCE_LOAD_NONE)
#else
#if JUCE_USE_SSE_INTRINSICS
const __m128 val = _mm_load1_ps (&valueToFill);
#endif
JUCE_PERFORM_SSE_OP_DEST (dest[i] = valueToFill, val, JUCE_LOAD_NONE)
#endif
}
void JUCE_CALLTYPE FloatVectorOperations::copy (float* dest, const float* src, int num) noexcept
{
memcpy (dest, src, (size_t) num * sizeof (float));
}
void JUCE_CALLTYPE FloatVectorOperations::copyWithMultiply (float* dest, const float* src, float multiplier, int num) noexcept
{
#if JUCE_USE_VDSP_FRAMEWORK
vDSP_vsmul (src, 1, &multiplier, dest, 1, num);
#elif JUCE_USE_ARM_NEON
JUCE_PERFORM_NEON_OP_SRC_DEST (dest[i] += src[i], vmulq_n_f32(s, multiplier), JUCE_LOAD_SRC)
#else
#if JUCE_USE_SSE_INTRINSICS
const __m128 mult = _mm_load1_ps (&multiplier);
#endif
JUCE_PERFORM_SSE_OP_SRC_DEST (dest[i] = src[i] * multiplier, _mm_mul_ps (mult, s),
JUCE_LOAD_SRC, JUCE_INCREMENT_SRC_DEST)
#endif
}
void JUCE_CALLTYPE FloatVectorOperations::add (float* dest, float amount, int num) noexcept
{
#if JUCE_USE_ARM_NEON
const float32x4_t amountToAdd = vld1q_dup_f32(&amount);
JUCE_PERFORM_NEON_OP_DEST (dest[i] += amount, vaddq_f32 (d, amountToAdd), JUCE_LOAD_DEST)
#else
#if JUCE_USE_SSE_INTRINSICS
const __m128 amountToAdd = _mm_load1_ps (&amount);
#endif
JUCE_PERFORM_SSE_OP_DEST (dest[i] += amount, _mm_add_ps (d, amountToAdd), JUCE_LOAD_DEST)
#endif
}
void JUCE_CALLTYPE FloatVectorOperations::add (float* dest, const float* src, int num) noexcept
{
#if JUCE_USE_VDSP_FRAMEWORK
vDSP_vadd (src, 1, dest, 1, dest, 1, num);
#elif JUCE_USE_ARM_NEON
JUCE_PERFORM_NEON_OP_SRC_DEST (dest[i] += src[i], vaddq_f32 (d, s), JUCE_LOAD_SRC_DEST)
#else
JUCE_PERFORM_SSE_OP_SRC_DEST (dest[i] += src[i], _mm_add_ps (d, s), JUCE_LOAD_SRC_DEST, JUCE_INCREMENT_SRC_DEST)
#endif
}
void JUCE_CALLTYPE FloatVectorOperations::subtract (float* dest, const float* src, int num) noexcept
{
#if JUCE_USE_VDSP_FRAMEWORK
vDSP_vsub (src, 1, dest, 1, dest, 1, num);
#elif JUCE_USE_ARM_NEON
JUCE_PERFORM_NEON_OP_SRC_DEST (dest[i] -= src[i], vsubq_f32 (d, s), JUCE_LOAD_SRC_DEST)
#else
JUCE_PERFORM_SSE_OP_SRC_DEST (dest[i] -= src[i], _mm_sub_ps (d, s), JUCE_LOAD_SRC_DEST, JUCE_INCREMENT_SRC_DEST)
#endif
}
void JUCE_CALLTYPE FloatVectorOperations::addWithMultiply (float* dest, const float* src, float multiplier, int num) noexcept
{
#if JUCE_USE_ARM_NEON
JUCE_PERFORM_NEON_OP_SRC_DEST (dest[i] += src[i] * multiplier,
vmlaq_n_f32 (d, s, multiplier),
JUCE_LOAD_SRC_DEST)
#else
#if JUCE_USE_SSE_INTRINSICS
const __m128 mult = _mm_load1_ps (&multiplier);
#endif
JUCE_PERFORM_SSE_OP_SRC_DEST (dest[i] += src[i] * multiplier,
_mm_add_ps (d, _mm_mul_ps (mult, s)),
JUCE_LOAD_SRC_DEST, JUCE_INCREMENT_SRC_DEST)
#endif
}
void JUCE_CALLTYPE FloatVectorOperations::multiply (float* dest, const float* src, int num) noexcept
{
#if JUCE_USE_VDSP_FRAMEWORK
vDSP_vmul (src, 1, dest, 1, dest, 1, num);
#elif JUCE_USE_ARM_NEON
JUCE_PERFORM_NEON_OP_SRC_DEST (dest[i] *= src[i], vmulq_f32 (d, s), JUCE_LOAD_SRC_DEST)
#else
JUCE_PERFORM_SSE_OP_SRC_DEST (dest[i] *= src[i], _mm_mul_ps (d, s), JUCE_LOAD_SRC_DEST, JUCE_INCREMENT_SRC_DEST)
#endif
}
void JUCE_CALLTYPE FloatVectorOperations::multiply (float* dest, float multiplier, int num) noexcept
{
#if JUCE_USE_VDSP_FRAMEWORK
vDSP_vsmul (dest, 1, &multiplier, dest, 1, num);
#elif JUCE_USE_ARM_NEON
JUCE_PERFORM_NEON_OP_DEST (dest[i] *= multiplier, vmulq_n_f32 (d, multiplier), JUCE_LOAD_DEST)
#else
#if JUCE_USE_SSE_INTRINSICS
const __m128 mult = _mm_load1_ps (&multiplier);
#endif
JUCE_PERFORM_SSE_OP_DEST (dest[i] *= multiplier, _mm_mul_ps (d, mult), JUCE_LOAD_DEST)
#endif
}
void FloatVectorOperations::negate (float* dest, const float* src, int num) noexcept
{
#if JUCE_USE_VDSP_FRAMEWORK
vDSP_vneg ((float*) src, 1, dest, 1, (vDSP_Length) num);
#else
copyWithMultiply (dest, src, -1.0f, num);
#endif
}
void JUCE_CALLTYPE FloatVectorOperations::convertFixedToFloat (float* dest, const int* src, float multiplier, int num) noexcept
{
#if JUCE_USE_ARM_NEON
JUCE_PERFORM_NEON_OP_SRC_DEST (dest[i] = src[i] * multiplier,
vmulq_n_f32 (vcvtq_f32_s32 (vld1q_s32 (src)), multiplier),
JUCE_LOAD_NONE)
#else
#if JUCE_USE_SSE_INTRINSICS
const __m128 mult = _mm_load1_ps (&multiplier);
#endif
JUCE_PERFORM_SSE_OP_SRC_DEST (dest[i] = src[i] * multiplier,
_mm_mul_ps (mult, _mm_cvtepi32_ps (_mm_loadu_si128 ((const __m128i*) src))),
JUCE_LOAD_NONE, JUCE_INCREMENT_SRC_DEST)
#endif
}
void JUCE_CALLTYPE FloatVectorOperations::findMinAndMax (const float* src, int num, float& minResult, float& maxResult) noexcept
{
#if JUCE_USE_SSE_INTRINSICS
const int numLongOps = num / 4;
if (numLongOps > 1 && FloatVectorHelpers::isSSE2Available())
{
__m128 mn, mx;
#define JUCE_MINMAX_SSE_LOOP(loadOp) \
mn = loadOp (src); \
mx = mn; \
src += 4; \
for (int i = 1; i < numLongOps; ++i) \
{ \
const __m128 s = loadOp (src); \
mn = _mm_min_ps (mn, s); \
mx = _mm_max_ps (mx, s); \
src += 4; \
}
if (FloatVectorHelpers::isAligned (src)) { JUCE_MINMAX_SSE_LOOP (_mm_load_ps) }
else { JUCE_MINMAX_SSE_LOOP (_mm_loadu_ps) }
float localMin, localMax;
{
float mns[4], mxs[4];
_mm_storeu_ps (mns, mn);
_mm_storeu_ps (mxs, mx);
localMin = jmin (mns[0], mns[1], mns[2], mns[3]);
localMax = jmax (mxs[0], mxs[1], mxs[2], mxs[3]);
}
num &= 3;
for (int i = 0; i < num; ++i)
{
const float s = src[i];
localMin = jmin (localMin, s);
localMax = jmax (localMax, s);
}
minResult = localMin;
maxResult = localMax;
return;
}
#elif JUCE_USE_ARM_NEON
const int numLongOps = num / 4;
if (numLongOps > 1)
{
float32x4_t mn, mx;
#define JUCE_MINMAX_NEON_LOOP(loadOp) \
mn = loadOp (src); \
mx = mn; \
src += 4; \
for (int i = 1; i < numLongOps; ++i) \
{ \
const float32x4_t s = loadOp (src); \
mn = vminq_f32 (mn, s); \
mx = vmaxq_f32 (mx, s); \
src += 4; \
}
JUCE_MINMAX_NEON_LOOP (vld1q_f32);
float localMin, localMax;
{
float mns[4], mxs[4];
vst1q_f32 (mns, mn);
vst1q_f32 (mxs, mx);
localMin = jmin (mns[0], mns[1], mns[2], mns[3]);
localMax = jmax (mxs[0], mxs[1], mxs[2], mxs[3]);
}
num &= 3;
for (int i = 0; i < num; ++i)
{
const float s = src[i];
localMin = jmin (localMin, s);
localMax = jmax (localMax, s);
}
minResult = localMin;
maxResult = localMax;
return;
}
#endif
juce::findMinAndMax (src, num, minResult, maxResult);
}
float JUCE_CALLTYPE FloatVectorOperations::findMinimum (const float* src, int num) noexcept
{
#if JUCE_USE_SSE_INTRINSICS || JUCE_USE_ARM_NEON
return FloatVectorHelpers::findMinimumOrMaximum (src, num, true);
#else
return juce::findMinimum (src, num);
#endif
}
float JUCE_CALLTYPE FloatVectorOperations::findMaximum (const float* src, int num) noexcept
{
#if JUCE_USE_SSE_INTRINSICS || JUCE_USE_ARM_NEON
return FloatVectorHelpers::findMinimumOrMaximum (src, num, false);
#else
return juce::findMaximum (src, num);
#endif
}
void JUCE_CALLTYPE FloatVectorOperations::enableFlushToZeroMode (bool shouldEnable) noexcept
{
#if JUCE_USE_SSE_INTRINSICS
if (FloatVectorHelpers::isSSE2Available())
_MM_SET_FLUSH_ZERO_MODE (shouldEnable ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF);
#endif
(void) shouldEnable;
}
//==============================================================================
//==============================================================================
#if JUCE_UNIT_TESTS
class FloatVectorOperationsTests : public UnitTest
{
public:
FloatVectorOperationsTests() : UnitTest ("FloatVectorOperations") {}
void runTest()
{
beginTest ("FloatVectorOperations");
for (int i = 100; --i >= 0;)
{
const int num = getRandom().nextInt (500) + 1;
HeapBlock<float> buffer1 (num + 16), buffer2 (num + 16);
HeapBlock<int> buffer3 (num + 16);
#if JUCE_ARM
float* const data1 = buffer1;
float* const data2 = buffer2;
int* const int1 = buffer3;
#else
float* const data1 = addBytesToPointer (buffer1.getData(), getRandom().nextInt (16));
float* const data2 = addBytesToPointer (buffer2.getData(), getRandom().nextInt (16));
int* const int1 = addBytesToPointer (buffer3.getData(), getRandom().nextInt (16));
#endif
fillRandomly (data1, num);
fillRandomly (data2, num);
float mn1, mx1, mn2, mx2;
FloatVectorOperations::findMinAndMax (data1, num, mn1, mx1);
juce::findMinAndMax (data1, num, mn2, mx2);
expect (mn1 == mn2);
expect (mx1 == mx2);
expect (FloatVectorOperations::findMinimum (data1, num) == juce::findMinimum (data1, num));
expect (FloatVectorOperations::findMaximum (data1, num) == juce::findMaximum (data1, num));
expect (FloatVectorOperations::findMinimum (data2, num) == juce::findMinimum (data2, num));
expect (FloatVectorOperations::findMaximum (data2, num) == juce::findMaximum (data2, num));
FloatVectorOperations::clear (data1, num);
expect (areAllValuesEqual (data1, num, 0));
FloatVectorOperations::fill (data1, 2.0f, num);
expect (areAllValuesEqual (data1, num, 2.0f));
FloatVectorOperations::add (data1, 2.0f, num);
expect (areAllValuesEqual (data1, num, 4.0f));
FloatVectorOperations::copy (data2, data1, num);
expect (areAllValuesEqual (data2, num, 4.0f));
FloatVectorOperations::add (data2, data1, num);
expect (areAllValuesEqual (data2, num, 8.0f));
FloatVectorOperations::copyWithMultiply (data2, data1, 4.0f, num);
expect (areAllValuesEqual (data2, num, 16.0f));
FloatVectorOperations::addWithMultiply (data2, data1, 4.0f, num);
expect (areAllValuesEqual (data2, num, 32.0f));
FloatVectorOperations::multiply (data1, 2.0f, num);
expect (areAllValuesEqual (data1, num, 8.0f));
FloatVectorOperations::multiply (data1, data2, num);
expect (areAllValuesEqual (data1, num, 256.0f));
FloatVectorOperations::negate (data2, data1, num);
expect (areAllValuesEqual (data2, num, -256.0f));
FloatVectorOperations::subtract (data1, data2, num);
expect (areAllValuesEqual (data1, num, 512.0f));
fillRandomly (int1, num);
FloatVectorOperations::convertFixedToFloat (data1, int1, 2.0f, num);
convertFixed (data2, int1, 2.0f, num);
expect (buffersMatch (data1, data2, num));
}
}
void fillRandomly (float* d, int num)
{
while (--num >= 0)
*d++ = getRandom().nextFloat() * 1000.0f;
}
void fillRandomly (int* d, int num)
{
while (--num >= 0)
*d++ = getRandom().nextInt();
}
static void convertFixed (float* d, const int* s, float multiplier, int num)
{
while (--num >= 0)
*d++ = *s++ * multiplier;
}
static bool areAllValuesEqual (const float* d, int num, float target)
{
while (--num >= 0)
if (*d++ != target)
return false;
return true;
}
static bool buffersMatch (const float* d1, const float* d2, int num)
{
while (--num >= 0)
if (std::abs (*d1++ - *d2++) > std::numeric_limits<float>::epsilon())
return false;
return true;
}
};
static FloatVectorOperationsTests vectorOpTests;
#endif