You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
dexed/JuceLibraryCode/modules/juce_graphics/geometry/juce_PathIterator.h

113 lines
4.3 KiB

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2013 - Raw Material Software Ltd.
Permission is granted to use this software under the terms of either:
a) the GPL v2 (or any later version)
b) the Affero GPL v3
Details of these licenses can be found at: www.gnu.org/licenses
JUCE is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
------------------------------------------------------------------------------
To release a closed-source product which uses JUCE, commercial licenses are
available: visit www.juce.com for more information.
==============================================================================
*/
#ifndef JUCE_PATHITERATOR_H_INCLUDED
#define JUCE_PATHITERATOR_H_INCLUDED
//==============================================================================
/**
Flattens a Path object into a series of straight-line sections.
Use one of these to iterate through a Path object, and it will convert
all the curves into line sections so it's easy to render or perform
geometric operations on.
@see Path
*/
class JUCE_API PathFlatteningIterator
{
public:
//==============================================================================
/** Creates a PathFlatteningIterator.
After creation, use the next() method to initialise the fields in the
object with the first line's position.
@param path the path to iterate along
@param transform a transform to apply to each point in the path being iterated
@param tolerance the amount by which the curves are allowed to deviate from the lines
into which they are being broken down - a higher tolerance contains
less lines, so can be generated faster, but will be less smooth.
*/
PathFlatteningIterator (const Path& path,
const AffineTransform& transform = AffineTransform::identity,
float tolerance = defaultTolerance);
/** Destructor. */
~PathFlatteningIterator();
//==============================================================================
/** Fetches the next line segment from the path.
This will update the member variables x1, y1, x2, y2, subPathIndex and closesSubPath
so that they describe the new line segment.
@returns false when there are no more lines to fetch.
*/
bool next();
float x1; /**< The x position of the start of the current line segment. */
float y1; /**< The y position of the start of the current line segment. */
float x2; /**< The x position of the end of the current line segment. */
float y2; /**< The y position of the end of the current line segment. */
/** Indicates whether the current line segment is closing a sub-path.
If the current line is the one that connects the end of a sub-path
back to the start again, this will be true.
*/
bool closesSubPath;
/** The index of the current line within the current sub-path.
E.g. you can use this to see whether the line is the first one in the
subpath by seeing if it's 0.
*/
int subPathIndex;
/** Returns true if the current segment is the last in the current sub-path. */
bool isLastInSubpath() const noexcept;
/** This is the default value that should be used for the tolerance value (see the constructor parameters). */
static const float defaultTolerance;
private:
//==============================================================================
const Path& path;
const AffineTransform transform;
float* points;
const float toleranceSquared;
float subPathCloseX, subPathCloseY;
const bool isIdentityTransform;
HeapBlock <float> stackBase;
float* stackPos;
size_t index, stackSize;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (PathFlatteningIterator)
};
#endif // JUCE_PATHITERATOR_H_INCLUDED