You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
dexed/JuceLibraryCode/modules/juce_gui_basics/drawables/juce_DrawablePath.cpp

570 lines
20 KiB

/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2015 - ROLI Ltd.
Permission is granted to use this software under the terms of either:
a) the GPL v2 (or any later version)
b) the Affero GPL v3
Details of these licenses can be found at: www.gnu.org/licenses
JUCE is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
------------------------------------------------------------------------------
To release a closed-source product which uses JUCE, commercial licenses are
available: visit www.juce.com for more information.
==============================================================================
*/
DrawablePath::DrawablePath()
{
}
DrawablePath::DrawablePath (const DrawablePath& other)
: DrawableShape (other)
{
if (other.relativePath != nullptr)
setPath (*other.relativePath);
else
setPath (other.path);
}
DrawablePath::~DrawablePath()
{
}
Drawable* DrawablePath::createCopy() const
{
return new DrawablePath (*this);
}
//==============================================================================
void DrawablePath::setPath (const Path& newPath)
{
path = newPath;
pathChanged();
}
const Path& DrawablePath::getPath() const
{
return path;
}
const Path& DrawablePath::getStrokePath() const
{
return strokePath;
}
void DrawablePath::applyRelativePath (const RelativePointPath& newRelativePath, Expression::Scope* scope)
{
Path newPath;
newRelativePath.createPath (newPath, scope);
if (path != newPath)
{
path.swapWithPath (newPath);
pathChanged();
}
}
//==============================================================================
class DrawablePath::RelativePositioner : public RelativeCoordinatePositionerBase
{
public:
RelativePositioner (DrawablePath& comp)
: RelativeCoordinatePositionerBase (comp),
owner (comp)
{
}
bool registerCoordinates() override
{
bool ok = true;
jassert (owner.relativePath != nullptr);
const RelativePointPath& relPath = *owner.relativePath;
for (int i = 0; i < relPath.elements.size(); ++i)
{
RelativePointPath::ElementBase* const e = relPath.elements.getUnchecked(i);
int numPoints;
RelativePoint* const points = e->getControlPoints (numPoints);
for (int j = numPoints; --j >= 0;)
ok = addPoint (points[j]) && ok;
}
return ok;
}
void applyToComponentBounds() override
{
jassert (owner.relativePath != nullptr);
ComponentScope scope (getComponent());
owner.applyRelativePath (*owner.relativePath, &scope);
}
void applyNewBounds (const Rectangle<int>&) override
{
jassertfalse; // drawables can't be resized directly!
}
private:
DrawablePath& owner;
JUCE_DECLARE_NON_COPYABLE_WITH_LEAK_DETECTOR (RelativePositioner)
};
void DrawablePath::setPath (const RelativePointPath& newRelativePath)
{
if (newRelativePath.containsAnyDynamicPoints())
{
if (relativePath == nullptr || newRelativePath != *relativePath)
{
relativePath = new RelativePointPath (newRelativePath);
RelativePositioner* const p = new RelativePositioner (*this);
setPositioner (p);
p->apply();
}
}
else
{
relativePath = nullptr;
applyRelativePath (newRelativePath, nullptr);
}
}
//==============================================================================
const Identifier DrawablePath::valueTreeType ("Path");
const Identifier DrawablePath::ValueTreeWrapper::nonZeroWinding ("nonZeroWinding");
const Identifier DrawablePath::ValueTreeWrapper::point1 ("p1");
const Identifier DrawablePath::ValueTreeWrapper::point2 ("p2");
const Identifier DrawablePath::ValueTreeWrapper::point3 ("p3");
//==============================================================================
DrawablePath::ValueTreeWrapper::ValueTreeWrapper (const ValueTree& state_)
: FillAndStrokeState (state_)
{
jassert (state.hasType (valueTreeType));
}
ValueTree DrawablePath::ValueTreeWrapper::getPathState()
{
return state.getOrCreateChildWithName (path, nullptr);
}
bool DrawablePath::ValueTreeWrapper::usesNonZeroWinding() const
{
return state [nonZeroWinding];
}
void DrawablePath::ValueTreeWrapper::setUsesNonZeroWinding (bool b, UndoManager* undoManager)
{
state.setProperty (nonZeroWinding, b, undoManager);
}
void DrawablePath::ValueTreeWrapper::readFrom (const RelativePointPath& p, UndoManager* undoManager)
{
setUsesNonZeroWinding (p.usesNonZeroWinding, undoManager);
ValueTree pathTree (getPathState());
pathTree.removeAllChildren (undoManager);
for (int i = 0; i < p.elements.size(); ++i)
pathTree.addChild (p.elements.getUnchecked(i)->createTree(), -1, undoManager);
}
void DrawablePath::ValueTreeWrapper::writeTo (RelativePointPath& p) const
{
p.usesNonZeroWinding = usesNonZeroWinding();
RelativePoint points[3];
const ValueTree pathTree (state.getChildWithName (path));
const int num = pathTree.getNumChildren();
for (int i = 0; i < num; ++i)
{
const Element e (pathTree.getChild(i));
const int numCps = e.getNumControlPoints();
for (int j = 0; j < numCps; ++j)
points[j] = e.getControlPoint (j);
RelativePointPath::ElementBase* newElement = nullptr;
const Identifier t (e.getType());
if (t == Element::startSubPathElement) newElement = new RelativePointPath::StartSubPath (points[0]);
else if (t == Element::closeSubPathElement) newElement = new RelativePointPath::CloseSubPath();
else if (t == Element::lineToElement) newElement = new RelativePointPath::LineTo (points[0]);
else if (t == Element::quadraticToElement) newElement = new RelativePointPath::QuadraticTo (points[0], points[1]);
else if (t == Element::cubicToElement) newElement = new RelativePointPath::CubicTo (points[0], points[1], points[2]);
else jassertfalse;
p.addElement (newElement);
}
}
//==============================================================================
const Identifier DrawablePath::ValueTreeWrapper::Element::mode ("mode");
const Identifier DrawablePath::ValueTreeWrapper::Element::startSubPathElement ("Move");
const Identifier DrawablePath::ValueTreeWrapper::Element::closeSubPathElement ("Close");
const Identifier DrawablePath::ValueTreeWrapper::Element::lineToElement ("Line");
const Identifier DrawablePath::ValueTreeWrapper::Element::quadraticToElement ("Quad");
const Identifier DrawablePath::ValueTreeWrapper::Element::cubicToElement ("Cubic");
const char* DrawablePath::ValueTreeWrapper::Element::cornerMode = "corner";
const char* DrawablePath::ValueTreeWrapper::Element::roundedMode = "round";
const char* DrawablePath::ValueTreeWrapper::Element::symmetricMode = "symm";
DrawablePath::ValueTreeWrapper::Element::Element (const ValueTree& state_)
: state (state_)
{
}
DrawablePath::ValueTreeWrapper::Element::~Element()
{
}
DrawablePath::ValueTreeWrapper DrawablePath::ValueTreeWrapper::Element::getParent() const
{
return ValueTreeWrapper (state.getParent().getParent());
}
DrawablePath::ValueTreeWrapper::Element DrawablePath::ValueTreeWrapper::Element::getPreviousElement() const
{
return Element (state.getSibling (-1));
}
int DrawablePath::ValueTreeWrapper::Element::getNumControlPoints() const noexcept
{
const Identifier i (state.getType());
if (i == startSubPathElement || i == lineToElement) return 1;
if (i == quadraticToElement) return 2;
if (i == cubicToElement) return 3;
return 0;
}
RelativePoint DrawablePath::ValueTreeWrapper::Element::getControlPoint (const int index) const
{
jassert (index >= 0 && index < getNumControlPoints());
return RelativePoint (state [index == 0 ? point1 : (index == 1 ? point2 : point3)].toString());
}
Value DrawablePath::ValueTreeWrapper::Element::getControlPointValue (int index, UndoManager* undoManager)
{
jassert (index >= 0 && index < getNumControlPoints());
return state.getPropertyAsValue (index == 0 ? point1 : (index == 1 ? point2 : point3), undoManager);
}
void DrawablePath::ValueTreeWrapper::Element::setControlPoint (const int index, const RelativePoint& point, UndoManager* undoManager)
{
jassert (index >= 0 && index < getNumControlPoints());
state.setProperty (index == 0 ? point1 : (index == 1 ? point2 : point3), point.toString(), undoManager);
}
RelativePoint DrawablePath::ValueTreeWrapper::Element::getStartPoint() const
{
const Identifier i (state.getType());
if (i == startSubPathElement)
return getControlPoint (0);
jassert (i == lineToElement || i == quadraticToElement || i == cubicToElement || i == closeSubPathElement);
return getPreviousElement().getEndPoint();
}
RelativePoint DrawablePath::ValueTreeWrapper::Element::getEndPoint() const
{
const Identifier i (state.getType());
if (i == startSubPathElement || i == lineToElement) return getControlPoint (0);
if (i == quadraticToElement) return getControlPoint (1);
if (i == cubicToElement) return getControlPoint (2);
jassert (i == closeSubPathElement);
return RelativePoint();
}
float DrawablePath::ValueTreeWrapper::Element::getLength (Expression::Scope* scope) const
{
const Identifier i (state.getType());
if (i == lineToElement || i == closeSubPathElement)
return getEndPoint().resolve (scope).getDistanceFrom (getStartPoint().resolve (scope));
if (i == cubicToElement)
{
Path p;
p.startNewSubPath (getStartPoint().resolve (scope));
p.cubicTo (getControlPoint (0).resolve (scope), getControlPoint (1).resolve (scope), getControlPoint (2).resolve (scope));
return p.getLength();
}
if (i == quadraticToElement)
{
Path p;
p.startNewSubPath (getStartPoint().resolve (scope));
p.quadraticTo (getControlPoint (0).resolve (scope), getControlPoint (1).resolve (scope));
return p.getLength();
}
jassert (i == startSubPathElement);
return 0;
}
String DrawablePath::ValueTreeWrapper::Element::getModeOfEndPoint() const
{
return state [mode].toString();
}
void DrawablePath::ValueTreeWrapper::Element::setModeOfEndPoint (const String& newMode, UndoManager* undoManager)
{
if (state.hasType (cubicToElement))
state.setProperty (mode, newMode, undoManager);
}
void DrawablePath::ValueTreeWrapper::Element::convertToLine (UndoManager* undoManager)
{
const Identifier i (state.getType());
if (i == quadraticToElement || i == cubicToElement)
{
ValueTree newState (lineToElement);
Element e (newState);
e.setControlPoint (0, getEndPoint(), undoManager);
state = newState;
}
}
void DrawablePath::ValueTreeWrapper::Element::convertToCubic (Expression::Scope* scope, UndoManager* undoManager)
{
const Identifier i (state.getType());
if (i == lineToElement || i == quadraticToElement)
{
ValueTree newState (cubicToElement);
Element e (newState);
const RelativePoint start (getStartPoint());
const RelativePoint end (getEndPoint());
const Point<float> startResolved (start.resolve (scope));
const Point<float> endResolved (end.resolve (scope));
e.setControlPoint (0, startResolved + (endResolved - startResolved) * 0.3f, undoManager);
e.setControlPoint (1, startResolved + (endResolved - startResolved) * 0.7f, undoManager);
e.setControlPoint (2, end, undoManager);
state = newState;
}
}
void DrawablePath::ValueTreeWrapper::Element::convertToPathBreak (UndoManager* undoManager)
{
const Identifier i (state.getType());
if (i != startSubPathElement)
{
ValueTree newState (startSubPathElement);
Element e (newState);
e.setControlPoint (0, getEndPoint(), undoManager);
state = newState;
}
}
namespace DrawablePathHelpers
{
static Point<float> findCubicSubdivisionPoint (float proportion, const Point<float> points[4])
{
const Point<float> mid1 (points[0] + (points[1] - points[0]) * proportion),
mid2 (points[1] + (points[2] - points[1]) * proportion),
mid3 (points[2] + (points[3] - points[2]) * proportion);
const Point<float> newCp1 (mid1 + (mid2 - mid1) * proportion),
newCp2 (mid2 + (mid3 - mid2) * proportion);
return newCp1 + (newCp2 - newCp1) * proportion;
}
static Point<float> findQuadraticSubdivisionPoint (float proportion, const Point<float> points[3])
{
const Point<float> mid1 (points[0] + (points[1] - points[0]) * proportion),
mid2 (points[1] + (points[2] - points[1]) * proportion);
return mid1 + (mid2 - mid1) * proportion;
}
}
float DrawablePath::ValueTreeWrapper::Element::findProportionAlongLine (Point<float> targetPoint, Expression::Scope* scope) const
{
using namespace DrawablePathHelpers;
const Identifier pointType (state.getType());
float bestProp = 0;
if (pointType == cubicToElement)
{
RelativePoint rp1 (getStartPoint()), rp2 (getControlPoint (0)), rp3 (getControlPoint (1)), rp4 (getEndPoint());
const Point<float> points[] = { rp1.resolve (scope), rp2.resolve (scope), rp3.resolve (scope), rp4.resolve (scope) };
float bestDistance = std::numeric_limits<float>::max();
for (int i = 110; --i >= 0;)
{
float prop = i > 10 ? ((i - 10) / 100.0f) : (bestProp + ((i - 5) / 1000.0f));
const Point<float> centre (findCubicSubdivisionPoint (prop, points));
const float distance = centre.getDistanceFrom (targetPoint);
if (distance < bestDistance)
{
bestProp = prop;
bestDistance = distance;
}
}
}
else if (pointType == quadraticToElement)
{
RelativePoint rp1 (getStartPoint()), rp2 (getControlPoint (0)), rp3 (getEndPoint());
const Point<float> points[] = { rp1.resolve (scope), rp2.resolve (scope), rp3.resolve (scope) };
float bestDistance = std::numeric_limits<float>::max();
for (int i = 110; --i >= 0;)
{
float prop = i > 10 ? ((i - 10) / 100.0f) : (bestProp + ((i - 5) / 1000.0f));
const Point<float> centre (findQuadraticSubdivisionPoint ((float) prop, points));
const float distance = centre.getDistanceFrom (targetPoint);
if (distance < bestDistance)
{
bestProp = prop;
bestDistance = distance;
}
}
}
else if (pointType == lineToElement)
{
RelativePoint rp1 (getStartPoint()), rp2 (getEndPoint());
const Line<float> line (rp1.resolve (scope), rp2.resolve (scope));
bestProp = line.findNearestProportionalPositionTo (targetPoint);
}
return bestProp;
}
ValueTree DrawablePath::ValueTreeWrapper::Element::insertPoint (Point<float> targetPoint, Expression::Scope* scope, UndoManager* undoManager)
{
ValueTree newTree;
const Identifier pointType (state.getType());
if (pointType == cubicToElement)
{
float bestProp = findProportionAlongLine (targetPoint, scope);
RelativePoint rp1 (getStartPoint()), rp2 (getControlPoint (0)), rp3 (getControlPoint (1)), rp4 (getEndPoint());
const Point<float> points[] = { rp1.resolve (scope), rp2.resolve (scope), rp3.resolve (scope), rp4.resolve (scope) };
const Point<float> mid1 (points[0] + (points[1] - points[0]) * bestProp),
mid2 (points[1] + (points[2] - points[1]) * bestProp),
mid3 (points[2] + (points[3] - points[2]) * bestProp);
const Point<float> newCp1 (mid1 + (mid2 - mid1) * bestProp),
newCp2 (mid2 + (mid3 - mid2) * bestProp);
const Point<float> newCentre (newCp1 + (newCp2 - newCp1) * bestProp);
setControlPoint (0, mid1, undoManager);
setControlPoint (1, newCp1, undoManager);
setControlPoint (2, newCentre, undoManager);
setModeOfEndPoint (roundedMode, undoManager);
Element newElement (newTree = ValueTree (cubicToElement));
newElement.setControlPoint (0, newCp2, nullptr);
newElement.setControlPoint (1, mid3, nullptr);
newElement.setControlPoint (2, rp4, nullptr);
state.getParent().addChild (newTree, state.getParent().indexOf (state) + 1, undoManager);
}
else if (pointType == quadraticToElement)
{
float bestProp = findProportionAlongLine (targetPoint, scope);
RelativePoint rp1 (getStartPoint()), rp2 (getControlPoint (0)), rp3 (getEndPoint());
const Point<float> points[] = { rp1.resolve (scope), rp2.resolve (scope), rp3.resolve (scope) };
const Point<float> mid1 (points[0] + (points[1] - points[0]) * bestProp),
mid2 (points[1] + (points[2] - points[1]) * bestProp);
const Point<float> newCentre (mid1 + (mid2 - mid1) * bestProp);
setControlPoint (0, mid1, undoManager);
setControlPoint (1, newCentre, undoManager);
setModeOfEndPoint (roundedMode, undoManager);
Element newElement (newTree = ValueTree (quadraticToElement));
newElement.setControlPoint (0, mid2, nullptr);
newElement.setControlPoint (1, rp3, nullptr);
state.getParent().addChild (newTree, state.getParent().indexOf (state) + 1, undoManager);
}
else if (pointType == lineToElement)
{
RelativePoint rp1 (getStartPoint()), rp2 (getEndPoint());
const Line<float> line (rp1.resolve (scope), rp2.resolve (scope));
const Point<float> newPoint (line.findNearestPointTo (targetPoint));
setControlPoint (0, newPoint, undoManager);
Element newElement (newTree = ValueTree (lineToElement));
newElement.setControlPoint (0, rp2, nullptr);
state.getParent().addChild (newTree, state.getParent().indexOf (state) + 1, undoManager);
}
else if (pointType == closeSubPathElement)
{
}
return newTree;
}
void DrawablePath::ValueTreeWrapper::Element::removePoint (UndoManager* undoManager)
{
state.getParent().removeChild (state, undoManager);
}
//==============================================================================
void DrawablePath::refreshFromValueTree (const ValueTree& tree, ComponentBuilder& builder)
{
ValueTreeWrapper v (tree);
setComponentID (v.getID());
refreshFillTypes (v, builder.getImageProvider());
setStrokeType (v.getStrokeType());
RelativePointPath newRelativePath;
v.writeTo (newRelativePath);
setPath (newRelativePath);
}
ValueTree DrawablePath::createValueTree (ComponentBuilder::ImageProvider* imageProvider) const
{
ValueTree tree (valueTreeType);
ValueTreeWrapper v (tree);
v.setID (getComponentID());
writeTo (v, imageProvider, nullptr);
if (relativePath != nullptr)
v.readFrom (*relativePath, nullptr);
else
v.readFrom (RelativePointPath (path), nullptr);
return tree;
}