/* * Copyright 2014 Pascal Gauthier. * Copyright 2012 Google Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "EngineMkI.h" #include #include #include "msfa/sin.h" #include "msfa/exp2.h" const FmAlgorithm EngineMkI::algo2[32] = { { { 0xc1, 0x11, 0x11, 0x14, 0x01, 0x14 } }, // 1 { { 0x01, 0x11, 0x11, 0x14, 0xc1, 0x14 } }, // 2 { { 0xc1, 0x11, 0x14, 0x01, 0x11, 0x14 } }, // 3 { { 0xc4, 0x00, 0x00, 0x01, 0x11, 0x14 } }, // 4 ** EXCEPTION VIA CODE { { 0xc1, 0x14, 0x01, 0x14, 0x01, 0x14 } }, // 5 { { 0xc4, 0x00, 0x01, 0x14, 0x01, 0x14 } }, // 6 ** EXCEPTION VIA CODE { { 0xc1, 0x11, 0x05, 0x14, 0x01, 0x14 } }, // 7 { { 0x01, 0x11, 0xc5, 0x14, 0x01, 0x14 } }, // 8 { { 0x01, 0x11, 0x05, 0x14, 0xc1, 0x14 } }, // 9 { { 0x01, 0x05, 0x14, 0xc1, 0x11, 0x14 } }, // 10 { { 0xc1, 0x05, 0x14, 0x01, 0x11, 0x14 } }, // 11 { { 0x01, 0x05, 0x05, 0x14, 0xc1, 0x14 } }, // 12 { { 0xc1, 0x05, 0x05, 0x14, 0x01, 0x14 } }, // 13 { { 0xc1, 0x05, 0x11, 0x14, 0x01, 0x14 } }, // 14 { { 0x01, 0x05, 0x11, 0x14, 0xc1, 0x14 } }, // 15 { { 0xc1, 0x11, 0x02, 0x25, 0x05, 0x14 } }, // 16 { { 0x01, 0x11, 0x02, 0x25, 0xc5, 0x14 } }, // 17 { { 0x01, 0x11, 0x11, 0xc5, 0x05, 0x14 } }, // 18 { { 0xc1, 0x14, 0x14, 0x01, 0x11, 0x14 } }, // 19 { { 0x01, 0x05, 0x14, 0xc1, 0x14, 0x14 } }, // 20 { { 0x01, 0x14, 0x14, 0xc1, 0x14, 0x14 } }, // 21 { { 0xc1, 0x14, 0x14, 0x14, 0x01, 0x14 } }, // 22 { { 0xc1, 0x14, 0x14, 0x01, 0x14, 0x04 } }, // 23 { { 0xc1, 0x14, 0x14, 0x14, 0x04, 0x04 } }, // 24 { { 0xc1, 0x14, 0x14, 0x04, 0x04, 0x04 } }, // 25 { { 0xc1, 0x05, 0x14, 0x01, 0x14, 0x04 } }, // 26 { { 0x01, 0x05, 0x14, 0xc1, 0x14, 0x04 } }, // 27 { { 0x04, 0xc1, 0x11, 0x14, 0x01, 0x14 } }, // 28 { { 0xc1, 0x14, 0x01, 0x14, 0x04, 0x04 } }, // 29 { { 0x04, 0xc1, 0x11, 0x14, 0x04, 0x04 } }, // 30 { { 0xc1, 0x14, 0x04, 0x04, 0x04, 0x04 } }, // 31 { { 0xc4, 0x04, 0x04, 0x04, 0x04, 0x04 } }, // 32 }; void EngineMkI::compute(int32_t *output, const int32_t *input, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, bool add, const Controllers *controllers) { int32_t dgain = (gain2 - gain1 + (N >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; if (add) { for (int i = 0; i < N; i++) { gain += dgain; int32_t y = Sin::lookup(phase + input[i]); int32_t y1 = ((int64_t)y * (int64_t)gain) >> 24; output[i] += y1; phase += freq; } } else { for (int i = 0; i < N; i++) { gain += dgain; int32_t y = Sin::lookup(phase + input[i]); int32_t y1 = ((int64_t)y * (int64_t)gain) >> 24; output[i] = y1; phase += freq; } } } void EngineMkI::compute_pure(int32_t *output, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, bool add, const Controllers *controllers) { int32_t dgain = (gain2 - gain1 + (N >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; if (add) { for (int i = 0; i < N; i++) { gain += dgain; int32_t y = Sin::lookup(phase); int32_t y1 = ((int64_t)y * (int64_t)gain) >> 24; output[i] += y1; phase += freq; } } else { for (int i = 0; i < N; i++) { gain += dgain; int32_t y = Sin::lookup(phase); int32_t y1 = ((int64_t)y * (int64_t)gain) >> 24; output[i] = y1; phase += freq; } } } void EngineMkI::compute_fb(int32_t *output, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, int32_t *fb_buf, int fb_shift, bool add, const Controllers *controllers) { int32_t dgain = (gain2 - gain1 + (N >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; int32_t y0 = fb_buf[0]; int32_t y = fb_buf[1]; if (add) { for (int i = 0; i < N; i++) { gain += dgain; int32_t scaled_fb = (y0 + y) >> (fb_shift + 1); y0 = y; y = Sin::lookup(phase + scaled_fb); y = ((int64_t)y * (int64_t)gain) >> 24; output[i] += y; phase += freq; } } else { for (int i = 0; i < N; i++) { gain += dgain; int32_t scaled_fb = (y0 + y) >> (fb_shift + 1); y0 = y; y = Sin::lookup(phase + scaled_fb); y = ((int64_t)y * (int64_t)gain) >> 24; output[i] = y; phase += freq; } } fb_buf[0] = y0; fb_buf[1] = y; } // exclusively used for ALGO 6 with feedback void EngineMkI::compute_fb2(int32_t *output, FmOpParams *parms, int32_t gain01, int32_t gain02, int32_t *fb_buf, int fb_shift, const Controllers *cont) { int32_t dgain[2]; int32_t gain[2]; int32_t phase[2]; int32_t y0 = fb_buf[0]; int32_t y = fb_buf[1]; phase[0] = parms[0].phase; phase[1] = parms[1].phase; gain[0] = gain01; gain[1] = parms[1].gain_out; dgain[0] = (gain02 - gain01 + (N >> 1)) >> LG_N; parms[1].gain_out = Exp2::lookup(parms[1].level_in - (14 * (1 << 24))); dgain[1] = (parms[1].gain_out - gain[1] + (N >> 1)) >> LG_N; for (int i = 0; i < N; i++) { // op 0 gain[0] += dgain[0]; int32_t scaled_fb = (y0 + y) >> (fb_shift + 2); // tsk tsk tsk: this needs some tuning y0 = y; y = Sin::lookup(phase[0] + scaled_fb); y = ((int64_t)y * (int64_t)gain[0]) >> 24; phase[0] += parms[0].freq; // op 1 gain[1] += dgain[1]; y = Sin::lookup(phase[1] + y); y = ((int64_t)y * (int64_t)gain[1]) >> 24; output[i] = y; phase[1] += parms[1].freq; } fb_buf[0] = y0; fb_buf[1] = y; } // exclusively used for ALGO 4 with feedback void EngineMkI::compute_fb3(int32_t *output, FmOpParams *parms, int32_t gain01, int32_t gain02, int32_t *fb_buf, int fb_shift, const Controllers *cont) { int32_t dgain[3]; int32_t gain[3]; int32_t phase[3]; int32_t y0 = fb_buf[0]; int32_t y = fb_buf[1]; phase[0] = parms[0].phase; phase[1] = parms[1].phase; phase[2] = parms[2].phase; gain[0] = gain01; gain[1] = parms[1].gain_out; gain[2] = parms[2].gain_out; dgain[0] = (gain02 - gain01 + (N >> 1)) >> LG_N; parms[1].gain_out = Exp2::lookup(parms[1].level_in - (14 * (1 << 24))); dgain[1] = (parms[1].gain_out - gain[1] + (N >> 1)) >> LG_N; parms[2].gain_out = Exp2::lookup(parms[2].level_in - (14 * (1 << 24))); dgain[2] = (parms[1].gain_out - gain[2] + (N >> 1)) >> LG_N; for (int i = 0; i < N; i++) { // op 0 gain[0] += dgain[0]; int32_t scaled_fb = (y0 + y) >> (fb_shift + 6); // tsk tsk tsk: this needs some tuning y0 = y; y = Sin::lookup(phase[0] + scaled_fb); y = ((int64_t)y * (int64_t)gain[0]) >> 24; phase[0] += parms[0].freq; // op 1 gain[1] += dgain[1]; y = Sin::lookup(phase[1] + y); y = ((int64_t)y * (int64_t)gain[1]) >> 24; phase[1] += parms[1].freq; // op 2 gain[2] += dgain[2]; y = Sin::lookup(phase[2] + y); y = ((int64_t)y * (int64_t)gain[2]) >> 24; output[i] = y; phase[2] += parms[2].freq; } fb_buf[0] = y0; fb_buf[1] = y; } void EngineMkI::render(int32_t *output, FmOpParams *params, int algorithm, int32_t *fb_buf, int feedback_shift, const Controllers *controllers) { const int kLevelThresh = 1120; const FmAlgorithm alg = algo2[algorithm]; bool has_contents[3] = { true, false, false }; for (int op = 0; op < 6; op++) { int flags = alg.ops[op]; bool add = (flags & OUT_BUS_ADD) != 0; FmOpParams ¶m = params[op]; int inbus = (flags >> 4) & 3; int outbus = flags & 3; int32_t *outptr = (outbus == 0) ? output : buf_[outbus - 1].get(); int32_t gain1 = param.gain_out; int32_t gain2 = Exp2::lookup(param.level_in - (14 * (1 << 24))); param.gain_out = gain2; if (gain1 >= kLevelThresh || gain2 >= kLevelThresh) { if (!has_contents[outbus]) { add = false; } if (inbus == 0 || !has_contents[inbus]) { // PG: this is my 'dirty' implementation of FB for 2 and 3 operators... // still needs some tuning... if ((flags & 0xc0) == 0xc0 && feedback_shift < 16) { switch ( algorithm ) { // two operator feedback, process exception for ALGO 6 case 5 : compute_fb2(outptr, params, gain1, gain2, fb_buf, feedback_shift, controllers); params[1].phase += params[1].freq << LG_N; // yuk, hack, we already processed op-5 op++; // ignore next operator; break; // three operator feedback, process exception for ALGO 4 case 3 : compute_fb3(outptr, params, gain1, gain2, fb_buf, feedback_shift, controllers); params[1].phase += params[1].freq << LG_N; // hack, we already processed op-5 - op-4 params[2].phase += params[2].freq << LG_N; // yuk yuk op += 2; // ignore the 2 other operators break; default: // one operator feedback, normal proces //cout << "\t" << op << " fb " << inbus << outbus << add << endl; compute_fb(outptr, param.phase, param.freq,gain1, gain2, fb_buf, feedback_shift, add, controllers); break; } } else { // cout << op << " pure " << inbus << outbus << add << endl; compute_pure(outptr, param.phase, param.freq, gain1, gain2, add, controllers); } } else { // cout << op << " normal " << inbus << outbus << " " << param.freq << add << endl; compute(outptr, buf_[inbus - 1].get(), param.phase, param.freq, gain1, gain2, add, controllers); } has_contents[outbus] = true; } else if (!add) { has_contents[outbus] = false; } param.phase += param.freq << LG_N; } }