/* * Copyright (C) 2015 Pascal Gauthier. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * The code is based on ppplay https://github.com/stohrendorf/ppplay and opl3 * math documentation : * https://github.com/gtaylormb/opl3_fpga/blob/master/docs/opl3math/opl3math.pdf * */ #include "EngineMkI.h" #define _USE_MATH_DEFINES #include #include #include "msfa/sin.h" #include "msfa/exp2.h" #ifdef DEBUG #include "time.h" //#define MKIDEBUG #endif #ifdef _WIN32 double log2(double n) { return log(n) / log(2.0); } double round(double n) { return n < 0.0 ? ceil(n - 0.5) : floor(n + 0.5); } __declspec(align(16)) int zeros[N] = {0}; #else const int32_t __attribute__ ((aligned(16))) zeros[N] = {0}; #endif static const uint16_t NEGATIVE_BIT = 0x8000; static const uint16_t ENV_BITDEPTH = 14; static const uint16_t SINLOG_BITDEPTH = 10; static const uint16_t SINLOG_TABLESIZE = 1< 90 ) { TRACE("SINLOGTABLE: %s" ,buffer); buffer[0] = 0; pos = 0; } } TRACE("SINLOGTABLE: %s", buffer); buffer[0] = 0; pos = 0; TRACE("----------------------------------------"); for(int i=0;i 90 ) { TRACE("SINEXTTABLE: %s" ,buffer); buffer[0] = 0; pos = 0; } } TRACE("SINEXTTABLE: %s", buffer); TRACE("****************************************"); #endif } inline int32_t mkiSin(int32_t phase, uint16_t env) { uint16_t expVal = sinLog(phase >> (22 - SINLOG_BITDEPTH)) + (env); //int16_t expValShow = expVal; const bool isSigned = expVal & NEGATIVE_BIT; expVal &= ~NEGATIVE_BIT; const uint16_t SINEXP_FILTER = 0x3FF; uint16_t result = 4096 + sinExpTable[( expVal & SINEXP_FILTER ) ^ SINEXP_FILTER]; //uint16_t resultB4 = result; result >>= ( expVal >> 10 ); // exp #ifdef MKIDEBUG if ( ( time(NULL) % 5 ) == 0 ) { if ( expValShow < 0 ) { expValShow = (expValShow + 0x7FFF) * -1; } //TRACE(",%d,%d,%d,%d,%d,%d", phase >> (22 - SINLOG_BITDEPTH), env, expValShow, ( expVal & SINEXP_FILTER ) ^ SINEXP_FILTER, resultB4, result); } #endif if( isSigned ) return (-result - 1) << 13; else return result << 13; } void EngineMkI::compute(int32_t *output, const int32_t *input, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, bool add) { int32_t dgain = (gain2 - gain1 + (N >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; const int32_t *adder = add ? output : zeros; for (int i = 0; i < N; i++) { gain += dgain; int32_t y = mkiSin((phase+input[i]), gain); output[i] = y + adder[i]; phase += freq; } } void EngineMkI::compute_pure(int32_t *output, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, bool add) { int32_t dgain = (gain2 - gain1 + (N >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; const int32_t *adder = add ? output : zeros; for (int i = 0; i < N; i++) { gain += dgain; int32_t y = mkiSin(phase , gain); output[i] = y + adder[i]; phase += freq; } } void EngineMkI::compute_fb(int32_t *output, int32_t phase0, int32_t freq, int32_t gain1, int32_t gain2, int32_t *fb_buf, int fb_shift, bool add) { int32_t dgain = (gain2 - gain1 + (N >> 1)) >> LG_N; int32_t gain = gain1; int32_t phase = phase0; const int32_t *adder = add ? output : zeros; int32_t y0 = fb_buf[0]; int32_t y = fb_buf[1]; for (int i = 0; i < N; i++) { gain += dgain; int32_t scaled_fb = (y0 + y) >> (fb_shift + 1); y0 = y; y = mkiSin((phase+scaled_fb), gain); output[i] = y + adder[i]; phase += freq; } fb_buf[0] = y0; fb_buf[1] = y; } void EngineMkI::render(int32_t *output, FmOpParams *params, int algorithm, int32_t *fb_buf, int feedback_shift) { const uint16_t ENV_MAX = 1<> 4) & 3; int outbus = flags & 3; int32_t *outptr = (outbus == 0) ? output : buf_[outbus - 1].get(); int32_t gain1 = param.gain_out == 0 ? (ENV_MAX-1) : param.gain_out; int32_t gain2 = ENV_MAX-(param.level_in >> (28-ENV_BITDEPTH)); param.gain_out = gain2; if (gain1 <= kLevelThresh || gain2 <= kLevelThresh) { if (!has_contents[outbus]) { add = false; } if (inbus == 0 || !has_contents[inbus]) { // todo: more than one op in a feedback loop if ((flags & 0xc0) == 0xc0 && feedback_shift < 16) { // cout << op << " fb " << inbus << outbus << add << endl; compute_fb(outptr, param.phase, param.freq, gain1, gain2, fb_buf, feedback_shift, add); } else { // cout << op << " pure " << inbus << outbus << add << endl; compute_pure(outptr, param.phase, param.freq, gain1, gain2, add); } } else { // cout << op << " normal " << inbus << outbus << " " << param.freq << add << endl; compute(outptr, buf_[inbus - 1].get(), param.phase, param.freq, gain1, gain2, add); } has_contents[outbus] = true; } else if (!add) { has_contents[outbus] = false; } param.phase += param.freq << LG_N; } } const FmAlgorithm EngineMkI::algo2[32] = { { { 0xc1, 0x11, 0x11, 0x14, 0x01, 0x14 } }, // 1 { { 0x01, 0x11, 0x11, 0x14, 0xc1, 0x14 } }, // 2 { { 0xc1, 0x11, 0x14, 0x01, 0x11, 0x14 } }, // 3 { { 0xc4, 0x00, 0x00, 0x01, 0x11, 0x14 } }, // 4 ** EXCEPTION VIA CODE { { 0xc1, 0x14, 0x01, 0x14, 0x01, 0x14 } }, // 5 { { 0xc4, 0x00, 0x01, 0x14, 0x01, 0x14 } }, // 6 ** EXCEPTION VIA CODE { { 0xc1, 0x11, 0x05, 0x14, 0x01, 0x14 } }, // 7 { { 0x01, 0x11, 0xc5, 0x14, 0x01, 0x14 } }, // 8 { { 0x01, 0x11, 0x05, 0x14, 0xc1, 0x14 } }, // 9 { { 0x01, 0x05, 0x14, 0xc1, 0x11, 0x14 } }, // 10 { { 0xc1, 0x05, 0x14, 0x01, 0x11, 0x14 } }, // 11 { { 0x01, 0x05, 0x05, 0x14, 0xc1, 0x14 } }, // 12 { { 0xc1, 0x05, 0x05, 0x14, 0x01, 0x14 } }, // 13 { { 0xc1, 0x05, 0x11, 0x14, 0x01, 0x14 } }, // 14 { { 0x01, 0x05, 0x11, 0x14, 0xc1, 0x14 } }, // 15 { { 0xc1, 0x11, 0x02, 0x25, 0x05, 0x14 } }, // 16 { { 0x01, 0x11, 0x02, 0x25, 0xc5, 0x14 } }, // 17 { { 0x01, 0x11, 0x11, 0xc5, 0x05, 0x14 } }, // 18 { { 0xc1, 0x14, 0x14, 0x01, 0x11, 0x14 } }, // 19 { { 0x01, 0x05, 0x14, 0xc1, 0x14, 0x14 } }, // 20 { { 0x01, 0x14, 0x14, 0xc1, 0x14, 0x14 } }, // 21 { { 0xc1, 0x14, 0x14, 0x14, 0x01, 0x14 } }, // 22 { { 0xc1, 0x14, 0x14, 0x01, 0x14, 0x04 } }, // 23 { { 0xc1, 0x14, 0x14, 0x14, 0x04, 0x04 } }, // 24 { { 0xc1, 0x14, 0x14, 0x04, 0x04, 0x04 } }, // 25 { { 0xc1, 0x05, 0x14, 0x01, 0x14, 0x04 } }, // 26 { { 0x01, 0x05, 0x14, 0xc1, 0x14, 0x04 } }, // 27 { { 0x04, 0xc1, 0x11, 0x14, 0x01, 0x14 } }, // 28 { { 0xc1, 0x14, 0x01, 0x14, 0x04, 0x04 } }, // 29 { { 0x04, 0xc1, 0x11, 0x14, 0x04, 0x04 } }, // 30 { { 0xc1, 0x14, 0x04, 0x04, 0x04, 0x04 } }, // 31 { { 0xc4, 0x04, 0x04, 0x04, 0x04, 0x04 } }, // 32 }; // exclusively used for ALGO 4 with feedback void EngineMkI::compute_fb3(int32_t *output, FmOpParams *parms, int32_t gain01, int32_t gain02, int32_t *fb_buf, int fb_shift) { int32_t dgain[3]; int32_t gain[3]; int32_t phase[3]; int32_t y0 = fb_buf[0]; int32_t y = fb_buf[1]; phase[0] = parms[0].phase; phase[1] = parms[1].phase; phase[2] = parms[2].phase; gain[0] = gain01; gain[1] = parms[1].gain_out; gain[2] = parms[2].gain_out; dgain[0] = (gain02 - gain01 + (N >> 1)) >> LG_N; parms[1].gain_out = Exp2::lookup(parms[1].level_in - (14 * (1 << 24))); dgain[1] = (parms[1].gain_out - gain[1] + (N >> 1)) >> LG_N; parms[2].gain_out = Exp2::lookup(parms[2].level_in - (14 * (1 << 24))); dgain[2] = (parms[1].gain_out - gain[2] + (N >> 1)) >> LG_N; for (int i = 0; i < N; i++) { // op 0 gain[0] += dgain[0]; int32_t scaled_fb = (y0 + y) >> (fb_shift + 6); // tsk tsk tsk: this needs some tuning y0 = y; y = Sin::lookup(phase[0] + scaled_fb); y = ((int64_t)y * (int64_t)gain[0]) >> 24; phase[0] += parms[0].freq; // op 1 gain[1] += dgain[1]; y = Sin::lookup(phase[1] + y); y = ((int64_t)y * (int64_t)gain[1]) >> 24; phase[1] += parms[1].freq; // op 2 gain[2] += dgain[2]; y = Sin::lookup(phase[2] + y); y = ((int64_t)y * (int64_t)gain[2]) >> 24; output[i] = y; phase[2] += parms[2].freq; } fb_buf[0] = y0; fb_buf[1] = y; } // exclusively used for ALGO 6 with feedback void EngineMkI::compute_fb2(int32_t *output, FmOpParams *parms, int32_t gain01, int32_t gain02, int32_t *fb_buf, int fb_shift) { int32_t dgain[2]; int32_t gain[2]; int32_t phase[2]; int32_t y0 = fb_buf[0]; int32_t y = fb_buf[1]; phase[0] = parms[0].phase; phase[1] = parms[1].phase; gain[0] = gain01; gain[1] = parms[1].gain_out; dgain[0] = (gain02 - gain01 + (N >> 1)) >> LG_N; parms[1].gain_out = Exp2::lookup(parms[1].level_in - (14 * (1 << 24))); dgain[1] = (parms[1].gain_out - gain[1] + (N >> 1)) >> LG_N; for (int i = 0; i < N; i++) { // op 0 gain[0] += dgain[0]; int32_t scaled_fb = (y0 + y) >> (fb_shift + 2); // tsk tsk tsk: this needs some tuning y0 = y; y = Sin::lookup(phase[0] + scaled_fb); y = ((int64_t)y * (int64_t)gain[0]) >> 24; phase[0] += parms[0].freq; // op 1 gain[1] += dgain[1]; y = Sin::lookup(phase[1] + y); y = ((int64_t)y * (int64_t)gain[1]) >> 24; output[i] = y; phase[1] += parms[1].freq; } fb_buf[0] = y0; fb_buf[1] = y; } /* void EngineMkI::render(int32_t *output, FmOpParams *params, int algorithm, int32_t *fb_buf, int feedback_shift) { const int kLevelThresh = 507; const FmAlgorithm alg = algo2[algorithm]; bool has_contents[3] = { true, false, false }; for (int op = 0; op < 6; op++) { int flags = alg.ops[op]; bool add = (flags & OUT_BUS_ADD) != 0; FmOpParams ¶m = params[op]; int inbus = (flags >> 4) & 3; int outbus = flags & 3; int32_t *outptr = (outbus == 0) ? output : buf_[outbus - 1].get(); int32_t gain1 = param.gain_out == 0 ? 511 : param.gain_out; int32_t gain2 = 512-(param.level_in >> 19); param.gain_out = gain2; if (gain1 >= kLevelThresh || gain2 >= kLevelThresh) { if (!has_contents[outbus]) { add = false; } if (inbus == 0 || !has_contents[inbus]) { // PG: this is my 'dirty' implementation of FB for 2 and 3 operators... // still needs some tuning... if ((flags & 0xc0) == 0xc0 && feedback_shift < 16) { switch ( algorithm ) { // two operator feedback, process exception for ALGO 6 case 5 : //compute_fb2(outptr, params, gain1, gain2, fb_buf, feedback_shift, controllers); params[1].phase += params[1].freq << LG_N; // yuk, hack, we already processed op-5 op++; // ignore next operator; break; // three operator feedback, process exception for ALGO 4 case 3 : //compute_fb3(outptr, params, gain1, gain2, fb_buf, feedback_shift, controllers); params[1].phase += params[1].freq << LG_N; // hack, we already processed op-5 - op-4 params[2].phase += params[2].freq << LG_N; // yuk yuk op += 2; // ignore the 2 other operators break; default: // one operator feedback, normal proces //cout << "\t" << op << " fb " << inbus << outbus << add << endl; compute_fb(outptr, param.phase, param.freq,gain1, gain2, fb_buf, feedback_shift, add); break; } } else { // cout << op << " pure " << inbus << outbus << add << endl; compute_pure(outptr, param.phase, param.freq, gain1, gain2, add); } } else { // cout << op << " normal " << inbus << outbus << " " << param.freq << add << endl; compute(outptr, buf_[inbus - 1].get(), param.phase, param.freq, gain1, gain2, add); } has_contents[outbus] = true; } else if (!add) { has_contents[outbus] = false; } param.phase += param.freq << LG_N; } } */