You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
dexed/JuceLibraryCode/modules/juce_graphics/geometry/juce_EdgeTable.cpp

832 lines
23 KiB

11 years ago
/*
==============================================================================
This file is part of the JUCE library.
Copyright (c) 2015 - ROLI Ltd.
11 years ago
Permission is granted to use this software under the terms of either:
a) the GPL v2 (or any later version)
b) the Affero GPL v3
Details of these licenses can be found at: www.gnu.org/licenses
JUCE is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.
------------------------------------------------------------------------------
To release a closed-source product which uses JUCE, commercial licenses are
available: visit www.juce.com for more information.
==============================================================================
*/
const int juce_edgeTableDefaultEdgesPerLine = 32;
//==============================================================================
EdgeTable::EdgeTable (const Rectangle<int>& area,
const Path& path, const AffineTransform& transform)
: bounds (area),
maxEdgesPerLine (juce_edgeTableDefaultEdgesPerLine),
lineStrideElements (juce_edgeTableDefaultEdgesPerLine * 2 + 1),
needToCheckEmptiness (true)
{
allocate();
int* t = table;
for (int i = bounds.getHeight(); --i >= 0;)
{
*t = 0;
t += lineStrideElements;
}
const int leftLimit = bounds.getX() << 8;
const int topLimit = bounds.getY() << 8;
const int rightLimit = bounds.getRight() << 8;
const int heightLimit = bounds.getHeight() << 8;
PathFlatteningIterator iter (path, transform);
while (iter.next())
{
int y1 = roundToInt (iter.y1 * 256.0f);
int y2 = roundToInt (iter.y2 * 256.0f);
if (y1 != y2)
{
y1 -= topLimit;
y2 -= topLimit;
const int startY = y1;
int direction = -1;
if (y1 > y2)
{
std::swap (y1, y2);
direction = 1;
}
if (y1 < 0)
y1 = 0;
if (y2 > heightLimit)
y2 = heightLimit;
if (y1 < y2)
{
const double startX = 256.0f * iter.x1;
const double multiplier = (iter.x2 - iter.x1) / (iter.y2 - iter.y1);
const int stepSize = jlimit (1, 256, 256 / (1 + (int) std::abs (multiplier)));
do
{
const int step = jmin (stepSize, y2 - y1, 256 - (y1 & 255));
int x = roundToInt (startX + multiplier * ((y1 + (step >> 1)) - startY));
if (x < leftLimit)
x = leftLimit;
else if (x >= rightLimit)
x = rightLimit - 1;
addEdgePoint (x, y1 >> 8, direction * step);
y1 += step;
}
while (y1 < y2);
}
}
}
sanitiseLevels (path.isUsingNonZeroWinding());
}
EdgeTable::EdgeTable (const Rectangle<int>& rectangleToAdd)
: bounds (rectangleToAdd),
maxEdgesPerLine (juce_edgeTableDefaultEdgesPerLine),
lineStrideElements (juce_edgeTableDefaultEdgesPerLine * 2 + 1),
needToCheckEmptiness (true)
{
allocate();
table[0] = 0;
const int x1 = rectangleToAdd.getX() << 8;
const int x2 = rectangleToAdd.getRight() << 8;
int* t = table;
for (int i = rectangleToAdd.getHeight(); --i >= 0;)
{
t[0] = 2;
t[1] = x1;
t[2] = 255;
t[3] = x2;
t[4] = 0;
t += lineStrideElements;
}
}
EdgeTable::EdgeTable (const RectangleList<int>& rectanglesToAdd)
: bounds (rectanglesToAdd.getBounds()),
maxEdgesPerLine (juce_edgeTableDefaultEdgesPerLine),
lineStrideElements (juce_edgeTableDefaultEdgesPerLine * 2 + 1),
needToCheckEmptiness (true)
{
allocate();
clearLineSizes();
for (const Rectangle<int>* r = rectanglesToAdd.begin(), * const e = rectanglesToAdd.end(); r != e; ++r)
{
const int x1 = r->getX() << 8;
const int x2 = r->getRight() << 8;
int y = r->getY() - bounds.getY();
for (int j = r->getHeight(); --j >= 0;)
addEdgePointPair (x1, x2, y++, 255);
}
sanitiseLevels (true);
}
EdgeTable::EdgeTable (const RectangleList<float>& rectanglesToAdd)
: bounds (rectanglesToAdd.getBounds().getSmallestIntegerContainer()),
maxEdgesPerLine (rectanglesToAdd.getNumRectangles() * 2),
lineStrideElements (rectanglesToAdd.getNumRectangles() * 4 + 1),
needToCheckEmptiness (true)
{
bounds.setHeight (bounds.getHeight() + 1);
allocate();
clearLineSizes();
for (const Rectangle<float>* r = rectanglesToAdd.begin(), * const e = rectanglesToAdd.end(); r != e; ++r)
{
const int x1 = roundToInt (r->getX() * 256.0f);
const int x2 = roundToInt (r->getRight() * 256.0f);
const int y1 = roundToInt (r->getY() * 256.0f) - (bounds.getY() << 8);
const int y2 = roundToInt (r->getBottom() * 256.0f) - (bounds.getY() << 8);
if (x2 <= x1 || y2 <= y1)
continue;
int y = y1 >> 8;
const int lastLine = y2 >> 8;
if (y == lastLine)
{
addEdgePointPair (x1, x2, y, y2 - y1);
}
else
{
addEdgePointPair (x1, x2, y++, 255 - (y1 & 255));
while (y < lastLine)
addEdgePointPair (x1, x2, y++, 255);
jassert (y < bounds.getHeight());
addEdgePointPair (x1, x2, y, y2 & 255);
}
}
sanitiseLevels (true);
}
EdgeTable::EdgeTable (const Rectangle<float>& rectangleToAdd)
: bounds (Rectangle<int> ((int) std::floor (rectangleToAdd.getX()),
roundToInt (rectangleToAdd.getY() * 256.0f) >> 8,
2 + (int) rectangleToAdd.getWidth(),
2 + (int) rectangleToAdd.getHeight())),
maxEdgesPerLine (juce_edgeTableDefaultEdgesPerLine),
lineStrideElements ((juce_edgeTableDefaultEdgesPerLine << 1) + 1),
needToCheckEmptiness (true)
{
jassert (! rectangleToAdd.isEmpty());
allocate();
table[0] = 0;
const int x1 = roundToInt (rectangleToAdd.getX() * 256.0f);
const int x2 = roundToInt (rectangleToAdd.getRight() * 256.0f);
int y1 = roundToInt (rectangleToAdd.getY() * 256.0f) - (bounds.getY() << 8);
jassert (y1 < 256);
int y2 = roundToInt (rectangleToAdd.getBottom() * 256.0f) - (bounds.getY() << 8);
if (x2 <= x1 || y2 <= y1)
{
bounds.setHeight (0);
return;
}
int lineY = 0;
int* t = table;
if ((y1 >> 8) == (y2 >> 8))
{
t[0] = 2;
t[1] = x1;
t[2] = y2 - y1;
t[3] = x2;
t[4] = 0;
++lineY;
t += lineStrideElements;
}
else
{
t[0] = 2;
t[1] = x1;
t[2] = 255 - (y1 & 255);
t[3] = x2;
t[4] = 0;
++lineY;
t += lineStrideElements;
while (lineY < (y2 >> 8))
{
t[0] = 2;
t[1] = x1;
t[2] = 255;
t[3] = x2;
t[4] = 0;
++lineY;
t += lineStrideElements;
}
jassert (lineY < bounds.getHeight());
t[0] = 2;
t[1] = x1;
t[2] = y2 & 255;
t[3] = x2;
t[4] = 0;
++lineY;
t += lineStrideElements;
}
while (lineY < bounds.getHeight())
{
t[0] = 0;
t += lineStrideElements;
++lineY;
}
}
EdgeTable::EdgeTable (const EdgeTable& other)
{
operator= (other);
}
EdgeTable& EdgeTable::operator= (const EdgeTable& other)
{
bounds = other.bounds;
maxEdgesPerLine = other.maxEdgesPerLine;
lineStrideElements = other.lineStrideElements;
needToCheckEmptiness = other.needToCheckEmptiness;
allocate();
copyEdgeTableData (table, lineStrideElements, other.table, lineStrideElements, bounds.getHeight());
return *this;
}
EdgeTable::~EdgeTable()
{
}
//==============================================================================
static size_t getEdgeTableAllocationSize (int lineStride, int height) noexcept
{
// (leave an extra line at the end for use as scratch space)
return (size_t) (lineStride * (2 + jmax (0, height)));
}
void EdgeTable::allocate()
{
table.malloc (getEdgeTableAllocationSize (lineStrideElements, bounds.getHeight()));
}
void EdgeTable::clearLineSizes() noexcept
{
int* t = table;
for (int i = bounds.getHeight(); --i >= 0;)
{
*t = 0;
t += lineStrideElements;
}
}
void EdgeTable::copyEdgeTableData (int* dest, const int destLineStride, const int* src, const int srcLineStride, int numLines) noexcept
{
while (--numLines >= 0)
{
memcpy (dest, src, (size_t) (src[0] * 2 + 1) * sizeof (int));
src += srcLineStride;
dest += destLineStride;
}
}
void EdgeTable::sanitiseLevels (const bool useNonZeroWinding) noexcept
{
// Convert the table from relative windings to absolute levels..
int* lineStart = table;
for (int y = bounds.getHeight(); --y >= 0;)
{
int num = lineStart[0];
if (num > 0)
{
LineItem* items = reinterpret_cast<LineItem*> (lineStart + 1);
LineItem* const itemsEnd = items + num;
// sort the X coords
std::sort (items, itemsEnd);
const LineItem* src = items;
int correctedNum = num;
int level = 0;
while (src < itemsEnd)
{
level += src->level;
const int x = src->x;
++src;
while (src < itemsEnd && src->x == x)
{
level += src->level;
++src;
--correctedNum;
}
int corrected = std::abs (level);
if (corrected >> 8)
{
if (useNonZeroWinding)
{
corrected = 255;
}
else
{
corrected &= 511;
if (corrected >> 8)
corrected = 511 - corrected;
}
}
items->x = x;
items->level = corrected;
++items;
}
lineStart[0] = correctedNum;
(items - 1)->level = 0; // force the last level to 0, just in case something went wrong in creating the table
}
lineStart += lineStrideElements;
}
}
void EdgeTable::remapTableForNumEdges (const int newNumEdgesPerLine)
{
if (newNumEdgesPerLine != maxEdgesPerLine)
{
maxEdgesPerLine = newNumEdgesPerLine;
jassert (bounds.getHeight() > 0);
const int newLineStrideElements = maxEdgesPerLine * 2 + 1;
HeapBlock<int> newTable (getEdgeTableAllocationSize (newLineStrideElements, bounds.getHeight()));
copyEdgeTableData (newTable, newLineStrideElements, table, lineStrideElements, bounds.getHeight());
table.swapWith (newTable);
lineStrideElements = newLineStrideElements;
}
}
void EdgeTable::optimiseTable()
{
int maxLineElements = 0;
for (int i = bounds.getHeight(); --i >= 0;)
maxLineElements = jmax (maxLineElements, table [i * lineStrideElements]);
remapTableForNumEdges (maxLineElements);
}
void EdgeTable::addEdgePoint (const int x, const int y, const int winding)
{
jassert (y >= 0 && y < bounds.getHeight());
int* line = table + lineStrideElements * y;
const int numPoints = line[0];
if (numPoints >= maxEdgesPerLine)
{
remapTableForNumEdges (maxEdgesPerLine + juce_edgeTableDefaultEdgesPerLine);
jassert (numPoints < maxEdgesPerLine);
line = table + lineStrideElements * y;
}
line[0]++;
int n = numPoints << 1;
line [n + 1] = x;
line [n + 2] = winding;
}
void EdgeTable::addEdgePointPair (int x1, int x2, int y, int winding)
{
jassert (y >= 0 && y < bounds.getHeight());
int* line = table + lineStrideElements * y;
const int numPoints = line[0];
if (numPoints + 1 >= maxEdgesPerLine)
{
remapTableForNumEdges (maxEdgesPerLine + juce_edgeTableDefaultEdgesPerLine);
jassert (numPoints < maxEdgesPerLine);
line = table + lineStrideElements * y;
}
line[0] = numPoints + 2;
line += numPoints << 1;
line[1] = x1;
line[2] = winding;
line[3] = x2;
line[4] = -winding;
}
void EdgeTable::translate (float dx, const int dy) noexcept
{
bounds.translate ((int) std::floor (dx), dy);
int* lineStart = table;
const int intDx = (int) (dx * 256.0f);
for (int i = bounds.getHeight(); --i >= 0;)
{
int* line = lineStart;
lineStart += lineStrideElements;
int num = *line++;
while (--num >= 0)
{
*line += intDx;
line += 2;
}
}
}
void EdgeTable::multiplyLevels (float amount)
{
int* lineStart = table;
const int multiplier = (int) (amount * 256.0f);
for (int y = 0; y < bounds.getHeight(); ++y)
{
int numPoints = lineStart[0];
LineItem* item = reinterpret_cast<LineItem*> (lineStart + 1);
lineStart += lineStrideElements;
while (--numPoints > 0)
{
item->level = jmin (255, (item->level * multiplier) >> 8);
++item;
}
}
}
void EdgeTable::intersectWithEdgeTableLine (const int y, const int* const otherLine)
{
jassert (y >= 0 && y < bounds.getHeight());
int* srcLine = table + lineStrideElements * y;
int srcNum1 = *srcLine;
if (srcNum1 == 0)
return;
int srcNum2 = *otherLine;
if (srcNum2 == 0)
{
*srcLine = 0;
return;
}
const int right = bounds.getRight() << 8;
// optimise for the common case where our line lies entirely within a
// single pair of points, as happens when clipping to a simple rect.
if (srcNum2 == 2 && otherLine[2] >= 255)
{
clipEdgeTableLineToRange (srcLine, otherLine[1], jmin (right, otherLine[3]));
return;
}
bool isUsingTempSpace = false;
const int* src1 = srcLine + 1;
int x1 = *src1++;
const int* src2 = otherLine + 1;
int x2 = *src2++;
int destIndex = 0, destTotal = 0;
int level1 = 0, level2 = 0;
int lastX = std::numeric_limits<int>::min(), lastLevel = 0;
while (srcNum1 > 0 && srcNum2 > 0)
{
int nextX;
if (x1 <= x2)
{
if (x1 == x2)
{
level2 = *src2++;
x2 = *src2++;
--srcNum2;
}
nextX = x1;
level1 = *src1++;
x1 = *src1++;
--srcNum1;
}
else
{
nextX = x2;
level2 = *src2++;
x2 = *src2++;
--srcNum2;
}
if (nextX > lastX)
{
if (nextX >= right)
break;
lastX = nextX;
const int nextLevel = (level1 * (level2 + 1)) >> 8;
jassert (isPositiveAndBelow (nextLevel, (int) 256));
if (nextLevel != lastLevel)
{
if (destTotal >= maxEdgesPerLine)
{
srcLine[0] = destTotal;
if (isUsingTempSpace)
{
const size_t tempSize = (size_t) srcNum1 * 2 * sizeof (int);
int* const oldTemp = static_cast<int*> (alloca (tempSize));
memcpy (oldTemp, src1, tempSize);
remapTableForNumEdges (jmax (256, destTotal * 2));
srcLine = table + lineStrideElements * y;
int* const newTemp = table + lineStrideElements * bounds.getHeight();
memcpy (newTemp, oldTemp, tempSize);
src1 = newTemp;
}
else
{
remapTableForNumEdges (jmax (256, destTotal * 2));
srcLine = table + lineStrideElements * y;
}
}
++destTotal;
lastLevel = nextLevel;
if (! isUsingTempSpace)
{
isUsingTempSpace = true;
int* const temp = table + lineStrideElements * bounds.getHeight();
memcpy (temp, src1, (size_t) srcNum1 * 2 * sizeof (int));
src1 = temp;
}
srcLine[++destIndex] = nextX;
srcLine[++destIndex] = nextLevel;
}
}
}
if (lastLevel > 0)
{
if (destTotal >= maxEdgesPerLine)
{
srcLine[0] = destTotal;
remapTableForNumEdges (jmax (256, destTotal * 2));
srcLine = table + lineStrideElements * y;
}
++destTotal;
srcLine[++destIndex] = right;
srcLine[++destIndex] = 0;
}
srcLine[0] = destTotal;
}
void EdgeTable::clipEdgeTableLineToRange (int* dest, const int x1, const int x2) noexcept
{
int* lastItem = dest + (dest[0] * 2 - 1);
if (x2 < lastItem[0])
{
if (x2 <= dest[1])
{
dest[0] = 0;
return;
}
while (x2 < lastItem[-2])
{
--(dest[0]);
lastItem -= 2;
}
lastItem[0] = x2;
lastItem[1] = 0;
}
if (x1 > dest[1])
{
while (lastItem[0] > x1)
lastItem -= 2;
const int itemsRemoved = (int) (lastItem - (dest + 1)) / 2;
if (itemsRemoved > 0)
{
dest[0] -= itemsRemoved;
memmove (dest + 1, lastItem, (size_t) dest[0] * (sizeof (int) * 2));
}
dest[1] = x1;
}
}
//==============================================================================
void EdgeTable::clipToRectangle (const Rectangle<int>& r)
{
const Rectangle<int> clipped (r.getIntersection (bounds));
if (clipped.isEmpty())
{
needToCheckEmptiness = false;
bounds.setHeight (0);
}
else
{
const int top = clipped.getY() - bounds.getY();
const int bottom = clipped.getBottom() - bounds.getY();
if (bottom < bounds.getHeight())
bounds.setHeight (bottom);
for (int i = top; --i >= 0;)
table [lineStrideElements * i] = 0;
if (clipped.getX() > bounds.getX() || clipped.getRight() < bounds.getRight())
{
const int x1 = clipped.getX() << 8;
const int x2 = jmin (bounds.getRight(), clipped.getRight()) << 8;
int* line = table + lineStrideElements * top;
for (int i = bottom - top; --i >= 0;)
{
if (line[0] != 0)
clipEdgeTableLineToRange (line, x1, x2);
line += lineStrideElements;
}
}
needToCheckEmptiness = true;
}
}
void EdgeTable::excludeRectangle (const Rectangle<int>& r)
{
const Rectangle<int> clipped (r.getIntersection (bounds));
if (! clipped.isEmpty())
{
const int top = clipped.getY() - bounds.getY();
const int bottom = clipped.getBottom() - bounds.getY();
const int rectLine[] = { 4, std::numeric_limits<int>::min(), 255,
clipped.getX() << 8, 0,
clipped.getRight() << 8, 255,
std::numeric_limits<int>::max(), 0 };
for (int i = top; i < bottom; ++i)
intersectWithEdgeTableLine (i, rectLine);
needToCheckEmptiness = true;
}
}
void EdgeTable::clipToEdgeTable (const EdgeTable& other)
{
const Rectangle<int> clipped (other.bounds.getIntersection (bounds));
if (clipped.isEmpty())
{
needToCheckEmptiness = false;
bounds.setHeight (0);
}
else
{
const int top = clipped.getY() - bounds.getY();
const int bottom = clipped.getBottom() - bounds.getY();
if (bottom < bounds.getHeight())
bounds.setHeight (bottom);
if (clipped.getRight() < bounds.getRight())
bounds.setRight (clipped.getRight());
for (int i = 0; i < top; ++i)
table [lineStrideElements * i] = 0;
const int* otherLine = other.table + other.lineStrideElements * (clipped.getY() - other.bounds.getY());
for (int i = top; i < bottom; ++i)
{
intersectWithEdgeTableLine (i, otherLine);
otherLine += other.lineStrideElements;
}
needToCheckEmptiness = true;
}
}
void EdgeTable::clipLineToMask (int x, int y, const uint8* mask, int maskStride, int numPixels)
{
y -= bounds.getY();
if (y < 0 || y >= bounds.getHeight())
return;
needToCheckEmptiness = true;
if (numPixels <= 0)
{
table [lineStrideElements * y] = 0;
return;
}
int* tempLine = static_cast<int*> (alloca ((size_t) (numPixels * 2 + 4) * sizeof (int)));
int destIndex = 0, lastLevel = 0;
while (--numPixels >= 0)
{
const int alpha = *mask;
mask += maskStride;
if (alpha != lastLevel)
{
tempLine[++destIndex] = (x << 8);
tempLine[++destIndex] = alpha;
lastLevel = alpha;
}
++x;
}
if (lastLevel > 0)
{
tempLine[++destIndex] = (x << 8);
tempLine[++destIndex] = 0;
}
tempLine[0] = destIndex >> 1;
intersectWithEdgeTableLine (y, tempLine);
}
bool EdgeTable::isEmpty() noexcept
{
if (needToCheckEmptiness)
{
needToCheckEmptiness = false;
int* t = table;
for (int i = bounds.getHeight(); --i >= 0;)
{
if (t[0] > 1)
return false;
t += lineStrideElements;
}
bounds.setHeight (0);
}
return bounds.getHeight() == 0;
}