You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
275 lines
8.6 KiB
275 lines
8.6 KiB
// ---------------------------------------------------------------------------
|
|
// This file is part of reSID, a MOS6581 SID emulator engine.
|
|
// Copyright (C) 2004 Dag Lem <resid@nimrod.no>
|
|
//
|
|
// This program is free software; you can redistribute it and/or modify
|
|
// it under the terms of the GNU General Public License as published by
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
// (at your option) any later version.
|
|
//
|
|
// This program is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU General Public License
|
|
// along with this program; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
// ---------------------------------------------------------------------------
|
|
|
|
#ifndef __SPLINE_H__
|
|
#define __SPLINE_H__
|
|
|
|
RESID_NAMESPACE_START
|
|
|
|
// Our objective is to construct a smooth interpolating single-valued function
|
|
// y = f(x).
|
|
//
|
|
// Catmull-Rom splines are widely used for interpolation, however these are
|
|
// parametric curves [x(t) y(t) ...] and can not be used to directly calculate
|
|
// y = f(x).
|
|
// For a discussion of Catmull-Rom splines see Catmull, E., and R. Rom,
|
|
// "A Class of Local Interpolating Splines", Computer Aided Geometric Design.
|
|
//
|
|
// Natural cubic splines are single-valued functions, and have been used in
|
|
// several applications e.g. to specify gamma curves for image display.
|
|
// These splines do not afford local control, and a set of linear equations
|
|
// including all interpolation points must be solved before any point on the
|
|
// curve can be calculated. The lack of local control makes the splines
|
|
// more difficult to handle than e.g. Catmull-Rom splines, and real-time
|
|
// interpolation of a stream of data points is not possible.
|
|
// For a discussion of natural cubic splines, see e.g. Kreyszig, E., "Advanced
|
|
// Engineering Mathematics".
|
|
//
|
|
// Our approach is to approximate the properties of Catmull-Rom splines for
|
|
// piecewice cubic polynomials f(x) = ax^3 + bx^2 + cx + d as follows:
|
|
// Each curve segment is specified by four interpolation points,
|
|
// p0, p1, p2, p3.
|
|
// The curve between p1 and p2 must interpolate both p1 and p2, and in addition
|
|
// f'(p1.x) = k1 = (p2.y - p0.y)/(p2.x - p0.x) and
|
|
// f'(p2.x) = k2 = (p3.y - p1.y)/(p3.x - p1.x).
|
|
//
|
|
// The constraints are expressed by the following system of linear equations
|
|
//
|
|
// [ 1 xi xi^2 xi^3 ] [ d ] [ yi ]
|
|
// [ 1 2*xi 3*xi^2 ] * [ c ] = [ ki ]
|
|
// [ 1 xj xj^2 xj^3 ] [ b ] [ yj ]
|
|
// [ 1 2*xj 3*xj^2 ] [ a ] [ kj ]
|
|
//
|
|
// Solving using Gaussian elimination and back substitution, setting
|
|
// dy = yj - yi, dx = xj - xi, we get
|
|
//
|
|
// a = ((ki + kj) - 2*dy/dx)/(dx*dx);
|
|
// b = ((kj - ki)/dx - 3*(xi + xj)*a)/2;
|
|
// c = ki - (3*xi*a + 2*b)*xi;
|
|
// d = yi - ((xi*a + b)*xi + c)*xi;
|
|
//
|
|
// Having calculated the coefficients of the cubic polynomial we have the
|
|
// choice of evaluation by brute force
|
|
//
|
|
// for (x = x1; x <= x2; x += res) {
|
|
// y = ((a*x + b)*x + c)*x + d;
|
|
// plot(x, y);
|
|
// }
|
|
//
|
|
// or by forward differencing
|
|
//
|
|
// y = ((a*x1 + b)*x1 + c)*x1 + d;
|
|
// dy = (3*a*(x1 + res) + 2*b)*x1*res + ((a*res + b)*res + c)*res;
|
|
// d2y = (6*a*(x1 + res) + 2*b)*res*res;
|
|
// d3y = 6*a*res*res*res;
|
|
//
|
|
// for (x = x1; x <= x2; x += res) {
|
|
// plot(x, y);
|
|
// y += dy; dy += d2y; d2y += d3y;
|
|
// }
|
|
//
|
|
// See Foley, Van Dam, Feiner, Hughes, "Computer Graphics, Principles and
|
|
// Practice" for a discussion of forward differencing.
|
|
//
|
|
// If we have a set of interpolation points p0, ..., pn, we may specify
|
|
// curve segments between p0 and p1, and between pn-1 and pn by using the
|
|
// following constraints:
|
|
// f''(p0.x) = 0 and
|
|
// f''(pn.x) = 0.
|
|
//
|
|
// Substituting the results for a and b in
|
|
//
|
|
// 2*b + 6*a*xi = 0
|
|
//
|
|
// we get
|
|
//
|
|
// ki = (3*dy/dx - kj)/2;
|
|
//
|
|
// or by substituting the results for a and b in
|
|
//
|
|
// 2*b + 6*a*xj = 0
|
|
//
|
|
// we get
|
|
//
|
|
// kj = (3*dy/dx - ki)/2;
|
|
//
|
|
// Finally, if we have only two interpolation points, the cubic polynomial
|
|
// will degenerate to a straight line if we set
|
|
//
|
|
// ki = kj = dy/dx;
|
|
//
|
|
|
|
|
|
#if SPLINE_BRUTE_FORCE
|
|
#define interpolate_segment interpolate_brute_force
|
|
#else
|
|
#define interpolate_segment interpolate_forward_difference
|
|
#endif
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Calculation of coefficients.
|
|
// ----------------------------------------------------------------------------
|
|
inline
|
|
void cubic_coefficients(double x1, double y1, double x2, double y2,
|
|
double k1, double k2,
|
|
double& a, double& b, double& c, double& d)
|
|
{
|
|
double dx = x2 - x1, dy = y2 - y1;
|
|
|
|
a = ((k1 + k2) - 2*dy/dx)/(dx*dx);
|
|
b = ((k2 - k1)/dx - 3*(x1 + x2)*a)/2;
|
|
c = k1 - (3*x1*a + 2*b)*x1;
|
|
d = y1 - ((x1*a + b)*x1 + c)*x1;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Evaluation of cubic polynomial by brute force.
|
|
// ----------------------------------------------------------------------------
|
|
template<class PointPlotter>
|
|
inline
|
|
void interpolate_brute_force(double x1, double y1, double x2, double y2,
|
|
double k1, double k2,
|
|
PointPlotter plot, double res)
|
|
{
|
|
double a, b, c, d;
|
|
cubic_coefficients(x1, y1, x2, y2, k1, k2, a, b, c, d);
|
|
|
|
// Calculate each point.
|
|
for (double x = x1; x <= x2; x += res) {
|
|
double y = ((a*x + b)*x + c)*x + d;
|
|
plot(x, y);
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Evaluation of cubic polynomial by forward differencing.
|
|
// ----------------------------------------------------------------------------
|
|
template<class PointPlotter>
|
|
inline
|
|
void interpolate_forward_difference(double x1, double y1, double x2, double y2,
|
|
double k1, double k2,
|
|
PointPlotter plot, double res)
|
|
{
|
|
double a, b, c, d;
|
|
cubic_coefficients(x1, y1, x2, y2, k1, k2, a, b, c, d);
|
|
|
|
double y = ((a*x1 + b)*x1 + c)*x1 + d;
|
|
double dy = (3*a*(x1 + res) + 2*b)*x1*res + ((a*res + b)*res + c)*res;
|
|
double d2y = (6*a*(x1 + res) + 2*b)*res*res;
|
|
double d3y = 6*a*res*res*res;
|
|
|
|
// Calculate each point.
|
|
for (double x = x1; x <= x2; x += res) {
|
|
plot(x, y);
|
|
y += dy; dy += d2y; d2y += d3y;
|
|
}
|
|
}
|
|
|
|
template<class PointIter>
|
|
inline
|
|
double x(PointIter p)
|
|
{
|
|
return (*p)[0];
|
|
}
|
|
|
|
template<class PointIter>
|
|
inline
|
|
double y(PointIter p)
|
|
{
|
|
return (*p)[1];
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Evaluation of complete interpolating function.
|
|
// Note that since each curve segment is controlled by four points, the
|
|
// end points will not be interpolated. If extra control points are not
|
|
// desirable, the end points can simply be repeated to ensure interpolation.
|
|
// Note also that points of non-differentiability and discontinuity can be
|
|
// introduced by repeating points.
|
|
// ----------------------------------------------------------------------------
|
|
template<class PointIter, class PointPlotter>
|
|
inline
|
|
void interpolate(PointIter p0, PointIter pn, PointPlotter plot, double res)
|
|
{
|
|
double k1, k2;
|
|
|
|
// Set up points for first curve segment.
|
|
PointIter p1 = p0; ++p1;
|
|
PointIter p2 = p1; ++p2;
|
|
PointIter p3 = p2; ++p3;
|
|
|
|
// Draw each curve segment.
|
|
for (; p2 != pn; ++p0, ++p1, ++p2, ++p3) {
|
|
// p1 and p2 equal; single point.
|
|
if (x(p1) == x(p2)) {
|
|
continue;
|
|
}
|
|
// Both end points repeated; straight line.
|
|
if (x(p0) == x(p1) && x(p2) == x(p3)) {
|
|
k1 = k2 = (y(p2) - y(p1))/(x(p2) - x(p1));
|
|
}
|
|
// p0 and p1 equal; use f''(x1) = 0.
|
|
else if (x(p0) == x(p1)) {
|
|
k2 = (y(p3) - y(p1))/(x(p3) - x(p1));
|
|
k1 = (3*(y(p2) - y(p1))/(x(p2) - x(p1)) - k2)/2;
|
|
}
|
|
// p2 and p3 equal; use f''(x2) = 0.
|
|
else if (x(p2) == x(p3)) {
|
|
k1 = (y(p2) - y(p0))/(x(p2) - x(p0));
|
|
k2 = (3*(y(p2) - y(p1))/(x(p2) - x(p1)) - k1)/2;
|
|
}
|
|
// Normal curve.
|
|
else {
|
|
k1 = (y(p2) - y(p0))/(x(p2) - x(p0));
|
|
k2 = (y(p3) - y(p1))/(x(p3) - x(p1));
|
|
}
|
|
|
|
interpolate_segment(x(p1), y(p1), x(p2), y(p2), k1, k2, plot, res);
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
// Class for plotting integers into an array.
|
|
// ----------------------------------------------------------------------------
|
|
template<class FN>
|
|
class PointPlotter
|
|
{
|
|
protected:
|
|
FN* f;
|
|
|
|
public:
|
|
PointPlotter(FN* arr) : f(arr)
|
|
{
|
|
}
|
|
|
|
void operator ()(double x, double y)
|
|
{
|
|
// Clamp negative values to zero.
|
|
if (y < 0) {
|
|
y = 0;
|
|
}
|
|
|
|
f[FN(x)] = FN(y);
|
|
}
|
|
};
|
|
|
|
RESID_NAMESPACE_STOP
|
|
|
|
#endif // not __SPLINE_H__
|
|
|