// --------------------------------------------------------------------------- // This file is part of reSID, a MOS6581 SID emulator engine. // Copyright (C) 2004 Dag Lem // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // You should have received a copy of the GNU General Public License // along with this program; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // --------------------------------------------------------------------------- #ifndef __EXTFILT_H__ #define __EXTFILT_H__ #include "siddefs.h" RESID_NAMESPACE_START // ---------------------------------------------------------------------------- // The audio output stage in a Commodore 64 consists of two STC networks, // a low-pass filter with 3-dB frequency 16kHz followed by a high-pass // filter with 3-dB frequency 16Hz (the latter provided an audio equipment // input impedance of 1kOhm). // The STC networks are connected with a BJT supposedly meant to act as // a unity gain buffer, which is not really how it works. A more elaborate // model would include the BJT, however DC circuit analysis yields BJT // base-emitter and emitter-base impedances sufficiently low to produce // additional low-pass and high-pass 3dB-frequencies in the order of hundreds // of kHz. This calls for a sampling frequency of several MHz, which is far // too high for practical use. // ---------------------------------------------------------------------------- class ExternalFilter { public: ExternalFilter(); void enable_filter(bool enable); void set_sampling_parameter(double pass_freq); void set_chip_model(chip_model model); RESID_INLINE void clock(sound_sample Vi); RESID_INLINE void clock(cycle_count delta_t, sound_sample Vi); void reset(); // Audio output (20 bits). RESID_INLINE sound_sample output(); protected: // Filter enabled. bool enabled; // Maximum mixer DC offset. sound_sample mixer_DC; // State of filters. sound_sample Vlp; // lowpass sound_sample Vhp; // highpass sound_sample Vo; // Cutoff frequencies. sound_sample w0lp; sound_sample w0hp; friend class SID; }; // ---------------------------------------------------------------------------- // Inline functions. // The following functions are defined inline because they are called every // time a sample is calculated. // ---------------------------------------------------------------------------- #if RESID_INLINING || defined(__EXTFILT_CC__) // ---------------------------------------------------------------------------- // SID clocking - 1 cycle. // ---------------------------------------------------------------------------- RESID_INLINE void ExternalFilter::clock(sound_sample Vi) { // This is handy for testing. if (!enabled) { // Remove maximum DC level since there is no filter to do it. Vlp = Vhp = 0; Vo = Vi - mixer_DC; return; } // delta_t is converted to seconds given a 1MHz clock by dividing // with 1 000 000. // Calculate filter outputs. // Vo = Vlp - Vhp; // Vlp = Vlp + w0lp*(Vi - Vlp)*delta_t; // Vhp = Vhp + w0hp*(Vlp - Vhp)*delta_t; sound_sample dVlp = (w0lp >> 8)*(Vi - Vlp) >> 12; sound_sample dVhp = w0hp*(Vlp - Vhp) >> 20; Vo = Vlp - Vhp; Vlp += dVlp; Vhp += dVhp; } // ---------------------------------------------------------------------------- // SID clocking - delta_t cycles. // ---------------------------------------------------------------------------- RESID_INLINE void ExternalFilter::clock(cycle_count delta_t, sound_sample Vi) { // This is handy for testing. if (!enabled) { // Remove maximum DC level since there is no filter to do it. Vlp = Vhp = 0; Vo = Vi - mixer_DC; return; } // Maximum delta cycles for the external filter to work satisfactorily // is approximately 8. cycle_count delta_t_flt = 8; while (delta_t) { if (delta_t < delta_t_flt) { delta_t_flt = delta_t; } // delta_t is converted to seconds given a 1MHz clock by dividing // with 1 000 000. // Calculate filter outputs. // Vo = Vlp - Vhp; // Vlp = Vlp + w0lp*(Vi - Vlp)*delta_t; // Vhp = Vhp + w0hp*(Vlp - Vhp)*delta_t; sound_sample dVlp = (w0lp*delta_t_flt >> 8)*(Vi - Vlp) >> 12; sound_sample dVhp = w0hp*delta_t_flt*(Vlp - Vhp) >> 20; Vo = Vlp - Vhp; Vlp += dVlp; Vhp += dVhp; delta_t -= delta_t_flt; } } // ---------------------------------------------------------------------------- // Audio output (19.5 bits). // ---------------------------------------------------------------------------- RESID_INLINE sound_sample ExternalFilter::output() { return Vo; } #endif // RESID_INLINING || defined(__EXTFILT_CC__) RESID_NAMESPACE_STOP #endif // not __EXTFILT_H__