|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
// This file is part of reSID, a MOS6581 SID emulator engine.
|
|
|
|
// Copyright (C) 2004 Dag Lem <resid@nimrod.no>
|
|
|
|
//
|
|
|
|
// This program is free software; you can redistribute it and/or modify
|
|
|
|
// it under the terms of the GNU General Public License as published by
|
|
|
|
// the Free Software Foundation; either version 2 of the License, or
|
|
|
|
// (at your option) any later version.
|
|
|
|
//
|
|
|
|
// This program is distributed in the hope that it will be useful,
|
|
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
// GNU General Public License for more details.
|
|
|
|
//
|
|
|
|
// You should have received a copy of the GNU General Public License
|
|
|
|
// along with this program; if not, write to the Free Software
|
|
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
|
|
|
|
#ifndef __ENVELOPE_H__
|
|
|
|
#define __ENVELOPE_H__
|
|
|
|
|
|
|
|
#include "siddefs.h"
|
|
|
|
|
|
|
|
RESID_NAMESPACE_START
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// A 15 bit counter is used to implement the envelope rates, in effect
|
|
|
|
// dividing the clock to the envelope counter by the currently selected rate
|
|
|
|
// period.
|
|
|
|
// In addition, another counter is used to implement the exponential envelope
|
|
|
|
// decay, in effect further dividing the clock to the envelope counter.
|
|
|
|
// The period of this counter is set to 1, 2, 4, 8, 16, 30 at the envelope
|
|
|
|
// counter values 255, 93, 54, 26, 14, 6, respectively.
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
class EnvelopeGenerator
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
EnvelopeGenerator();
|
|
|
|
|
|
|
|
enum State { ATTACK, DECAY_SUSTAIN, RELEASE };
|
|
|
|
|
|
|
|
RESID_INLINE void clock();
|
|
|
|
RESID_INLINE void clock(cycle_count delta_t);
|
|
|
|
void reset();
|
|
|
|
|
|
|
|
void writeCONTROL_REG(reg8);
|
|
|
|
void writeATTACK_DECAY(reg8);
|
|
|
|
void writeSUSTAIN_RELEASE(reg8);
|
|
|
|
reg8 readENV();
|
|
|
|
|
|
|
|
// 8-bit envelope output.
|
|
|
|
RESID_INLINE reg8 output();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
reg16 rate_counter;
|
|
|
|
reg16 rate_period;
|
|
|
|
reg8 exponential_counter;
|
|
|
|
reg8 exponential_counter_period;
|
|
|
|
reg8 envelope_counter;
|
|
|
|
bool hold_zero;
|
|
|
|
|
|
|
|
reg4 attack;
|
|
|
|
reg4 decay;
|
|
|
|
reg4 sustain;
|
|
|
|
reg4 release;
|
|
|
|
|
|
|
|
reg8 gate;
|
|
|
|
|
|
|
|
State state;
|
|
|
|
|
|
|
|
// Lookup table to convert from attack, decay, or release value to rate
|
|
|
|
// counter period.
|
|
|
|
static const reg16 rate_counter_period[];
|
|
|
|
|
|
|
|
// The 16 selectable sustain levels.
|
|
|
|
static const reg8 sustain_level[];
|
|
|
|
|
|
|
|
friend class SID;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Inline functions.
|
|
|
|
// The following functions are defined inline because they are called every
|
|
|
|
// time a sample is calculated.
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
#if RESID_INLINING || defined(__ENVELOPE_CC__)
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// SID clocking - 1 cycle.
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
RESID_INLINE
|
|
|
|
void EnvelopeGenerator::clock()
|
|
|
|
{
|
|
|
|
// Check for ADSR delay bug.
|
|
|
|
// If the rate counter comparison value is set below the current value of the
|
|
|
|
// rate counter, the counter will continue counting up until it wraps around
|
|
|
|
// to zero at 2^15 = 0x8000, and then count rate_period - 1 before the
|
|
|
|
// envelope can finally be stepped.
|
|
|
|
// This has been verified by sampling ENV3.
|
|
|
|
//
|
|
|
|
if (++rate_counter & 0x8000) {
|
|
|
|
++rate_counter &= 0x7fff;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (rate_counter != rate_period) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
rate_counter = 0;
|
|
|
|
|
|
|
|
// The first envelope step in the attack state also resets the exponential
|
|
|
|
// counter. This has been verified by sampling ENV3.
|
|
|
|
//
|
|
|
|
if (state == ATTACK || ++exponential_counter == exponential_counter_period)
|
|
|
|
{
|
|
|
|
exponential_counter = 0;
|
|
|
|
|
|
|
|
// Check whether the envelope counter is frozen at zero.
|
|
|
|
if (hold_zero) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (state) {
|
|
|
|
case ATTACK:
|
|
|
|
// The envelope counter can flip from 0xff to 0x00 by changing state to
|
|
|
|
// release, then to attack. The envelope counter is then frozen at
|
|
|
|
// zero; to unlock this situation the state must be changed to release,
|
|
|
|
// then to attack. This has been verified by sampling ENV3.
|
|
|
|
//
|
|
|
|
++envelope_counter &= 0xff;
|
|
|
|
if (envelope_counter == 0xff) {
|
|
|
|
state = DECAY_SUSTAIN;
|
|
|
|
rate_period = rate_counter_period[decay];
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case DECAY_SUSTAIN:
|
|
|
|
if (envelope_counter != sustain_level[sustain]) {
|
|
|
|
--envelope_counter;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case RELEASE:
|
|
|
|
// The envelope counter can flip from 0x00 to 0xff by changing state to
|
|
|
|
// attack, then to release. The envelope counter will then continue
|
|
|
|
// counting down in the release state.
|
|
|
|
// This has been verified by sampling ENV3.
|
|
|
|
// NB! The operation below requires two's complement integer.
|
|
|
|
//
|
|
|
|
--envelope_counter &= 0xff;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check for change of exponential counter period.
|
|
|
|
switch (envelope_counter) {
|
|
|
|
case 0xff:
|
|
|
|
exponential_counter_period = 1;
|
|
|
|
break;
|
|
|
|
case 0x5d:
|
|
|
|
exponential_counter_period = 2;
|
|
|
|
break;
|
|
|
|
case 0x36:
|
|
|
|
exponential_counter_period = 4;
|
|
|
|
break;
|
|
|
|
case 0x1a:
|
|
|
|
exponential_counter_period = 8;
|
|
|
|
break;
|
|
|
|
case 0x0e:
|
|
|
|
exponential_counter_period = 16;
|
|
|
|
break;
|
|
|
|
case 0x06:
|
|
|
|
exponential_counter_period = 30;
|
|
|
|
break;
|
|
|
|
case 0x00:
|
|
|
|
exponential_counter_period = 1;
|
|
|
|
|
|
|
|
// When the envelope counter is changed to zero, it is frozen at zero.
|
|
|
|
// This has been verified by sampling ENV3.
|
|
|
|
hold_zero = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// SID clocking - delta_t cycles.
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
RESID_INLINE
|
|
|
|
void EnvelopeGenerator::clock(cycle_count delta_t)
|
|
|
|
{
|
|
|
|
// Check for ADSR delay bug.
|
|
|
|
// If the rate counter comparison value is set below the current value of the
|
|
|
|
// rate counter, the counter will continue counting up until it wraps around
|
|
|
|
// to zero at 2^15 = 0x8000, and then count rate_period - 1 before the
|
|
|
|
// envelope can finally be stepped.
|
|
|
|
// This has been verified by sampling ENV3.
|
|
|
|
//
|
|
|
|
|
|
|
|
// NB! This requires two's complement integer.
|
|
|
|
int rate_step = rate_period - rate_counter;
|
|
|
|
if (rate_step <= 0) {
|
|
|
|
rate_step += 0x7fff;
|
|
|
|
}
|
|
|
|
|
|
|
|
while (delta_t) {
|
|
|
|
if (delta_t < rate_step) {
|
|
|
|
rate_counter += delta_t;
|
|
|
|
if (rate_counter & 0x8000) {
|
|
|
|
++rate_counter &= 0x7fff;
|
|
|
|
}
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
rate_counter = 0;
|
|
|
|
delta_t -= rate_step;
|
|
|
|
|
|
|
|
// The first envelope step in the attack state also resets the exponential
|
|
|
|
// counter. This has been verified by sampling ENV3.
|
|
|
|
//
|
|
|
|
if (state == ATTACK || ++exponential_counter == exponential_counter_period)
|
|
|
|
{
|
|
|
|
exponential_counter = 0;
|
|
|
|
|
|
|
|
// Check whether the envelope counter is frozen at zero.
|
|
|
|
if (hold_zero) {
|
|
|
|
rate_step = rate_period;
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
switch (state) {
|
|
|
|
case ATTACK:
|
|
|
|
// The envelope counter can flip from 0xff to 0x00 by changing state to
|
|
|
|
// release, then to attack. The envelope counter is then frozen at
|
|
|
|
// zero; to unlock this situation the state must be changed to release,
|
|
|
|
// then to attack. This has been verified by sampling ENV3.
|
|
|
|
//
|
|
|
|
++envelope_counter &= 0xff;
|
|
|
|
if (envelope_counter == 0xff) {
|
|
|
|
state = DECAY_SUSTAIN;
|
|
|
|
rate_period = rate_counter_period[decay];
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case DECAY_SUSTAIN:
|
|
|
|
if (envelope_counter != sustain_level[sustain]) {
|
|
|
|
--envelope_counter;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case RELEASE:
|
|
|
|
// The envelope counter can flip from 0x00 to 0xff by changing state to
|
|
|
|
// attack, then to release. The envelope counter will then continue
|
|
|
|
// counting down in the release state.
|
|
|
|
// This has been verified by sampling ENV3.
|
|
|
|
// NB! The operation below requires two's complement integer.
|
|
|
|
//
|
|
|
|
--envelope_counter &= 0xff;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check for change of exponential counter period.
|
|
|
|
switch (envelope_counter) {
|
|
|
|
case 0xff:
|
|
|
|
exponential_counter_period = 1;
|
|
|
|
break;
|
|
|
|
case 0x5d:
|
|
|
|
exponential_counter_period = 2;
|
|
|
|
break;
|
|
|
|
case 0x36:
|
|
|
|
exponential_counter_period = 4;
|
|
|
|
break;
|
|
|
|
case 0x1a:
|
|
|
|
exponential_counter_period = 8;
|
|
|
|
break;
|
|
|
|
case 0x0e:
|
|
|
|
exponential_counter_period = 16;
|
|
|
|
break;
|
|
|
|
case 0x06:
|
|
|
|
exponential_counter_period = 30;
|
|
|
|
break;
|
|
|
|
case 0x00:
|
|
|
|
exponential_counter_period = 1;
|
|
|
|
|
|
|
|
// When the envelope counter is changed to zero, it is frozen at zero.
|
|
|
|
// This has been verified by sampling ENV3.
|
|
|
|
hold_zero = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
rate_step = rate_period;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
// Read the envelope generator output.
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
RESID_INLINE
|
|
|
|
reg8 EnvelopeGenerator::output()
|
|
|
|
{
|
|
|
|
return envelope_counter;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // RESID_INLINING || defined(__ENVELOPE_CC__)
|
|
|
|
|
|
|
|
RESID_NAMESPACE_STOP
|
|
|
|
|
|
|
|
#endif // not __ENVELOPE_H__
|