First release

quite good
pull/18/head
Gaudi 8 years ago
parent b08b78404e
commit 89ad1a5bb9
  1. 146
      Open_Theremin_V3/EEPROM.h
  2. 8
      Open_Theremin_V3/Open_Theremin_V3.ino
  3. 167
      Open_Theremin_V3/application.cpp

@ -0,0 +1,146 @@
/*
EEPROM.h - EEPROM library
Original Copyright (c) 2006 David A. Mellis. All right reserved.
New version by Christopher Andrews 2015.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef EEPROM_h
#define EEPROM_h
#include <inttypes.h>
#include <avr/eeprom.h>
#include <avr/io.h>
/***
EERef class.
This object references an EEPROM cell.
Its purpose is to mimic a typical byte of RAM, however its storage is the EEPROM.
This class has an overhead of two bytes, similar to storing a pointer to an EEPROM cell.
***/
struct EERef{
EERef( const int index )
: index( index ) {}
//Access/read members.
uint8_t operator*() const { return eeprom_read_byte( (uint8_t*) index ); }
operator const uint8_t() const { return **this; }
//Assignment/write members.
EERef &operator=( const EERef &ref ) { return *this = *ref; }
EERef &operator=( uint8_t in ) { return eeprom_write_byte( (uint8_t*) index, in ), *this; }
EERef &operator +=( uint8_t in ) { return *this = **this + in; }
EERef &operator -=( uint8_t in ) { return *this = **this - in; }
EERef &operator *=( uint8_t in ) { return *this = **this * in; }
EERef &operator /=( uint8_t in ) { return *this = **this / in; }
EERef &operator ^=( uint8_t in ) { return *this = **this ^ in; }
EERef &operator %=( uint8_t in ) { return *this = **this % in; }
EERef &operator &=( uint8_t in ) { return *this = **this & in; }
EERef &operator |=( uint8_t in ) { return *this = **this | in; }
EERef &operator <<=( uint8_t in ) { return *this = **this << in; }
EERef &operator >>=( uint8_t in ) { return *this = **this >> in; }
EERef &update( uint8_t in ) { return in != *this ? *this = in : *this; }
/** Prefix increment/decrement **/
EERef& operator++() { return *this += 1; }
EERef& operator--() { return *this -= 1; }
/** Postfix increment/decrement **/
uint8_t operator++ (int){
uint8_t ret = **this;
return ++(*this), ret;
}
uint8_t operator-- (int){
uint8_t ret = **this;
return --(*this), ret;
}
int index; //Index of current EEPROM cell.
};
/***
EEPtr class.
This object is a bidirectional pointer to EEPROM cells represented by EERef objects.
Just like a normal pointer type, this can be dereferenced and repositioned using
increment/decrement operators.
***/
struct EEPtr{
EEPtr( const int index )
: index( index ) {}
operator const int() const { return index; }
EEPtr &operator=( int in ) { return index = in, *this; }
//Iterator functionality.
bool operator!=( const EEPtr &ptr ) { return index != ptr.index; }
EERef operator*() { return index; }
/** Prefix & Postfix increment/decrement **/
EEPtr& operator++() { return ++index, *this; }
EEPtr& operator--() { return --index, *this; }
EEPtr operator++ (int) { return index++; }
EEPtr operator-- (int) { return index--; }
int index; //Index of current EEPROM cell.
};
/***
EEPROMClass class.
This object represents the entire EEPROM space.
It wraps the functionality of EEPtr and EERef into a basic interface.
This class is also 100% backwards compatible with earlier Arduino core releases.
***/
struct EEPROMClass{
//Basic user access methods.
EERef operator[]( const int idx ) { return idx; }
uint8_t read( int idx ) { return EERef( idx ); }
void write( int idx, uint8_t val ) { (EERef( idx )) = val; }
void update( int idx, uint8_t val ) { EERef( idx ).update( val ); }
//STL and C++11 iteration capability.
EEPtr begin() { return 0x00; }
EEPtr end() { return length(); } //Standards requires this to be the item after the last valid entry. The returned pointer is invalid.
uint16_t length() { return E2END + 1; }
//Functionality to 'get' and 'put' objects to and from EEPROM.
template< typename T > T &get( int idx, T &t ){
EEPtr e = idx;
uint8_t *ptr = (uint8_t*) &t;
for( int count = sizeof(T) ; count ; --count, ++e ) *ptr++ = *e;
return t;
}
template< typename T > const T &put( int idx, const T &t ){
EEPtr e = idx;
const uint8_t *ptr = (const uint8_t*) &t;
for( int count = sizeof(T) ; count ; --count, ++e ) (*e).update( *ptr++ );
return t;
}
};
static EEPROMClass EEPROM;
#endif

@ -1,20 +1,20 @@
/*
* Open.Theremin control software for Arduino.UNO
* Open.Theremin control software for Arduino UNO
* Version 3.0
* Copyright (C) 2010-2016 by Urs Gaudenz
*
* Open.Theremin.UNO control software is free software: you can redistribute it and/or
* Open.Theremin control software is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Open.Theremin.UNO control software is distributed in the hope that it will be useful,
* Open.Theremin control software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with
* the Open.Theremin.UNO control software. If not, see <http://www.gnu.org/licenses/>.
* the Open.Theremin control software. If not, see <http://www.gnu.org/licenses/>.
*
* With important contributions by
* David Harvey

@ -6,13 +6,19 @@
#include "mcpDac.h"
#include "ihandlers.h"
#include "timer.h"
#include "EEPROM.h"
const AppMode AppModeValues[] = {MUTE,NORMAL};
const int16_t CalibrationTolerance = 15;
const int16_t PitchFreqOffset = 700;
const int16_t VolumeFreqOffset = 700;
static int32_t pitchCalibrationBase = 0;
static int32_t pitchCalibrationBaseFreq = 0;
static int32_t pitchCalibrationConstant = 0;
static int32_t pitchSensitivityConstant = 70000;
static int16_t pitchDAC = 0;
static int16_t volumeDAC = 0;
static float qMeasurement = 0;
static int32_t volCalibrationBase = 0;
@ -35,27 +41,23 @@ void Application::setup() {
digitalWrite(Application::LED_PIN_1, HIGH); // turn the LED off by making the voltage LOW
mcpDacInit();
initialiseTimer();
initialiseInterrupts();
EEPROM.get(0,pitchDAC);
EEPROM.get(2,volumeDAC);
mcpDacInit();
/// TEST
calibrate_pitch();
calibrate_volume();
mcpDac2ASend(pitchDAC);
mcpDac2BSend(volumeDAC);
initialiseTimer();
initialiseInterrupts();
initialiseTimer();
initialiseInterrupts();
#if CV_ENABLED
initialiseCVOut();
#endif
EEPROM.get(4,pitchCalibrationBase);
EEPROM.get(8,volCalibrationBase);
playStartupSound();
calibrate();
}
@ -160,6 +162,7 @@ void Application::loop() {
uint16_t volumePotValue = 0;
uint16_t pitchPotValue = 0;
uint16_t registerPotValue = 0;
@ -167,6 +170,7 @@ void Application::loop() {
pitchPotValue = analogRead(PITCH_POT);
volumePotValue = analogRead(VOLUME_POT);
registerPotValue = (analogRead(REGISTER_SELECT_POT)>>8)+1;
vWavetableSelector = analogRead(WAVE_SELECT_POT) >> 7;
@ -188,12 +192,25 @@ void Application::loop() {
_state = PLAYING;
};
if (_state == CALIBRATING && timerExpired(10000)) {
if (_state == CALIBRATING && timerExpired(15000)) {
HW_LED2_ON;
playCalibratingCountdownSound();
playStartupSound();
calibrate_pitch();
calibrate_volume();
calibrate();
initialiseTimer();
initialiseInterrupts();
playCalibratingCountdownSound();
calibrate();
_mode=NORMAL;
HW_LED2_OFF;
@ -229,7 +246,7 @@ void Application::loop() {
// set wave frequency for each mode
switch (_mode) {
case MUTE : /* NOTHING! */; break;
case NORMAL : setWavetableSampleAdvance((pitchCalibrationBase-pitch_v)/4+2048-(pitchPotValue<<2)); break;
case NORMAL : setWavetableSampleAdvance((pitchCalibrationBase-pitch_v)/registerPotValue+2048-(pitchPotValue<<2)); break;
};
// HW_LED2_OFF;
@ -279,6 +296,11 @@ void Application::calibrate()
while (!volumeValueAvailable && timerUnexpiredMillis(10))
; // NOP
volCalibrationBase = vol;
EEPROM.put(4,pitchCalibrationBase);
EEPROM.put(8,volCalibrationBase);
}
void Application::calibrate_pitch()
@ -292,25 +314,30 @@ static long pitchfn0 = 0;
static long pitchfn1 = 0;
static long pitchfn = 0;
Serial.begin(9600);
Serial.println("Pitch calibration");
Serial.begin(115200);
Serial.println("\nPITCH CALIBRATION\n");
HW_LED1_OFF;
HW_LED2_ON;
InitialisePitchMeasurement();
interrupts();
mcpDacInit();
qMeasurement = GetQMeasurement();
Serial.print("Q ");
Serial.println(qMeasurement);
qMeasurement = GetQMeasurement(); // Measure Arudino clock frequency
Serial.print("Arudino Freq: ");
Serial.println(qMeasurement);
q0 = (16000000/qMeasurement*500000);
Serial.println(q0);
q0 = (16000000/qMeasurement*500000); //Calculated set frequency based on Arudino clock frequency
pitchXn0 = 0;
pitchXn1 = 4095;
pitchfn = q0-600;
pitchfn = q0-PitchFreqOffset; // Add offset calue to set frequency
Serial.print("\nPitch Set Frequency: ");
Serial.println(pitchfn);
mcpDac2BSend(1600);
@ -322,12 +349,13 @@ mcpDac2ASend(pitchXn1);
delay(100);
pitchfn1 = GetPitchMeasurement();
Serial.print ("Frequency tuning range: ");
Serial.print(pitchfn0);
Serial.print(" ");
Serial.println(pitchfn1);
Serial.print(" to ");
Serial.println(pitchfn1);
while(abs(pitchfn0-pitchfn1)>10){
while(abs(pitchfn0-pitchfn1)>CalibrationTolerance){ // max allowed pitch frequency offset
mcpDac2ASend(pitchXn0);
delay(100);
@ -337,26 +365,27 @@ mcpDac2ASend(pitchXn1);
delay(100);
pitchfn1 = GetPitchMeasurement()-pitchfn;
pitchXn2=pitchXn1-((pitchXn1-pitchXn0)*pitchfn1)/(pitchfn1-pitchfn0);
Serial.print(pitchXn0);
Serial.print(" ");
Serial.println(pitchfn0);
pitchXn2=pitchXn1-((pitchXn1-pitchXn0)*pitchfn1)/(pitchfn1-pitchfn0); // new DAC value
Serial.print(pitchXn1);
Serial.print(" ");
Serial.print("\nDAC value L: ");
Serial.print(pitchXn0);
Serial.print(" Freq L: ");
Serial.println(pitchfn0);
Serial.print("DAC value H: ");
Serial.print(pitchXn1);
Serial.print(" Freq H: ");
Serial.println(pitchfn1);
Serial.println(pitchfn1);
Serial.println(pitchXn2);
Serial.println();
pitchXn0 = pitchXn1;
pitchXn1 = pitchXn2;
HW_LED2_TOGGLE;
}
digitalWrite(Application::LED_PIN_2, LOW); // turn the LED off by making the voltage LOW
delay(100);
EEPROM.put(0,pitchXn0);
}
@ -372,8 +401,8 @@ static long volumefn0 = 0;
static long volumefn1 = 0;
static long volumefn = 0;
Serial.begin(9600);
Serial.println("Volume calibration");
Serial.begin(115200);
Serial.println("\nVOLUME CALIBRATION");
InitialiseVolumeMeasurement();
interrupts();
@ -384,8 +413,10 @@ volumeXn0 = 0;
volumeXn1 = 4095;
q0 = (16000000/qMeasurement*460765);
volumefn = q0-VolumeFreqOffset;
volumefn = q0-600;
Serial.print("\nVolume Set Frequency: ");
Serial.println(volumefn);
mcpDac2BSend(volumeXn0);
@ -399,12 +430,13 @@ delay_NOP(44316);//44316=100ms
volumefn1 = GetVolumeMeasurement();
Serial.print ("Frequency tuning range: ");
Serial.print(volumefn0);
Serial.print(" ");
Serial.println(volumefn1);
while(abs(volumefn0-volumefn1)>10){
Serial.print(" to ");
Serial.println(volumefn1);
while(abs(volumefn0-volumefn1)>CalibrationTolerance){
mcpDac2BSend(volumeXn0);
delay_NOP(44316);//44316=100ms
@ -414,26 +446,30 @@ mcpDac2BSend(volumeXn1);
delay_NOP(44316);//44316=100ms
volumefn1 = GetVolumeMeasurement()-volumefn;
volumeXn2=volumeXn1-((volumeXn1-volumeXn0)*volumefn1)/(volumefn1-volumefn0);
Serial.print(volumeXn0);
Serial.print(" ");
Serial.println(volumefn0);
volumeXn2=volumeXn1-((volumeXn1-volumeXn0)*volumefn1)/(volumefn1-volumefn0); // calculate new DAC value
Serial.print(volumeXn1);
Serial.print(" ");
Serial.print("\nDAC value L: ");
Serial.print(volumeXn0);
Serial.print(" Freq L: ");
Serial.println(volumefn0);
Serial.print("DAC value H: ");
Serial.print(volumeXn1);
Serial.print(" Freq H: ");
Serial.println(volumefn1);
Serial.println(volumefn1);
Serial.println(volumeXn2);
Serial.println();
volumeXn0 = volumeXn1;
volumeXn1 = volumeXn2;
HW_LED2_TOGGLE;
}
digitalWrite(Application::LED_PIN_2, HIGH); // turn the LED off by making the voltage LOW
EEPROM.put(2,volumeXn0);
HW_LED2_OFF;
HW_LED1_ON;
Serial.println("\nCALIBRATION COMPTLETED\n");
}
void Application::hzToAddVal(float hz) {
@ -454,11 +490,8 @@ void Application::playStartupSound() {
}
void Application::playCalibratingCountdownSound() {
for (int i = 0; i < 5; i++) {
playNote(MIDDLE_C, 500, 25);
millitimer(150);
}
playNote(MIDDLE_C * 2, 1000, 25);
playNote(MIDDLE_C * 2, 150, 25);
playNote(MIDDLE_C * 2, 150, 25);
}
void Application::playModeSettingSound() {

Loading…
Cancel
Save