You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
218 lines
8.6 KiB
218 lines
8.6 KiB
// CESSB_ZeroIF.ino
|
|
// This tests the Controlled Envelope Single Sideband generator version
|
|
// that produces a zero-IF signal 0to 3kHz or 0 to -3 kHz.
|
|
// Uses radioCESSB_Z_transmit_F32.h and .cpp. See the .h file for
|
|
// more information and references.
|
|
// Tests with voice from SD Card file and a 1 second 750 Hz tone burst.
|
|
//
|
|
// The SD card may connect to different pins, depending on the
|
|
// hardware you are using. Configure the SD card
|
|
// pins to match your hardware. It is set for T4.x Rev D PJRC
|
|
// Teensy Audio Adaptor card here.
|
|
//
|
|
// Your microSD card must have the WAV file loaded to it:
|
|
// W9GR48.WAV
|
|
// These are at
|
|
// https://github.com/chipaudette/OpenAudio_ArduinoLibrary/blob/master/utility/
|
|
//
|
|
// This example code is in the public domain.
|
|
|
|
#include <Audio.h>
|
|
#include <Wire.h>
|
|
#include <SPI.h>
|
|
#include <SD.h>
|
|
#include "OpenAudio_ArduinoLibrary.h"
|
|
|
|
// T3.x supported sample rates: 2000, 8000, 11025, 16000, 22050, 24000, 32000, 44100, 44117, 48000,
|
|
// 88200, 88235 (44117*2), 95680, 96000, 176400, 176470, 192000
|
|
// T4.x supports any sample rate the codec will handle.
|
|
const float sample_rate_Hz = 48000.0f;
|
|
const int audio_block_samples = 128; // Always 128
|
|
AudioSettings_F32 audio_settings(sample_rate_Hz, audio_block_samples);
|
|
|
|
AudioSynthWaveformSine_F32 sine1(audio_settings);
|
|
AudioSDPlayer_F32 playWav1(audio_settings);
|
|
AudioMixer4_F32 mixer4_0;
|
|
radioCESSB_Z_transmit_F32 cessb1(audio_settings);
|
|
RadioIQMixer_F32 iqMixer1(audio_settings);
|
|
AudioMixer4_F32 mixer4_2;
|
|
AudioFilter90Deg_F32 filter90deg1(audio_settings);
|
|
RadioIQMixer_F32 iqMixer2(audio_settings);
|
|
AudioMixer4_F32 mixer4_1;
|
|
AudioOutputI2S_F32 audioOutput(audio_settings);
|
|
AudioAnalyzeFFT1024_F32 fft1;
|
|
|
|
AudioConnection_F32 patchCord0(playWav1, 0, mixer4_0, 0);
|
|
AudioConnection_F32 patchCordb(sine1, 0, mixer4_0, 1);
|
|
AudioConnection_F32 patchCordc(mixer4_0, 0, cessb1, 0);
|
|
AudioConnection_F32 patchCord1(cessb1, 0, iqMixer1, 0);
|
|
AudioConnection_F32 patchCord2(cessb1, 1, iqMixer1, 1);
|
|
AudioConnection_F32 patchCord9(iqMixer1, 0, mixer4_2, 0);
|
|
AudioConnection_F32 patchCord10(iqMixer1,1, mixer4_2, 1);
|
|
|
|
// mixer4_2 is transmitter SSB output, iqMixer2 is receiver input
|
|
AudioConnection_F32 patchCord14(mixer4_2,0, iqMixer2, 0);
|
|
AudioConnection_F32 patchCord3(iqMixer2, 0, filter90deg1, 0);
|
|
AudioConnection_F32 patchCord4(iqMixer2, 1, filter90deg1, 1);
|
|
AudioConnection_F32 patchCord7(filter90deg1, 0, mixer4_1, 0);
|
|
AudioConnection_F32 patchCord8(filter90deg1, 1, mixer4_1, 1);
|
|
AudioConnection_F32 patchCord11(mixer4_1, 0, audioOutput, 0);
|
|
AudioConnection_F32 patchCord12(mixer4_1, 0, audioOutput, 1);
|
|
AudioConnection_F32 patchCord13(mixer4_2, 0, fft1, 0);
|
|
|
|
AudioControlSGTL5000 sgtl5000_1;
|
|
|
|
// Use these with the Teensy 4.x Rev D Audio Shield (NOT for T3.x)
|
|
#define SDCARD_CS_PIN_Z 10
|
|
#define SDCARD_MOSI_PIN_Z 11
|
|
#define SDCARD_SCK_PIN_Z 13
|
|
|
|
// Filter for AudioFilter90Deg_F32 hilbert1, only for receiving the CESSB
|
|
#include "hilbert251A_Z_.h"
|
|
|
|
// wavData is a global struct, definined in AudioSDPlayer_F32.h
|
|
// This provides information about the current WAV file to this .INO
|
|
struct wavData* pCurrentWavData;
|
|
// And data about the CESSB
|
|
struct levelsZ* pLevelData;
|
|
uint32_t writeOne = 0;
|
|
uint32_t cntFFT = 0;
|
|
uint32_t ttt; // For timing test audio
|
|
|
|
uint32_t tp;
|
|
|
|
void setup() { // ********** SETUP **********
|
|
Serial.begin(9600); delay(1000);
|
|
Serial.println("*** Test CESSB Zero-IF from SD Card Voice Sample ***");
|
|
|
|
AudioMemory_F32(70, audio_settings);
|
|
pCurrentWavData = playWav1.getCurrentWavData();
|
|
sgtl5000_1.enable();
|
|
delay(500);
|
|
SPI.setMOSI(SDCARD_MOSI_PIN_Z);
|
|
SPI.setSCK(SDCARD_SCK_PIN_Z);
|
|
Serial.print("SD.begin() returns "); Serial.println(SD.begin(SDCARD_CS_PIN_Z));
|
|
|
|
// sine0.frequency(468.75f); // 2-tone generators
|
|
// sine0.amplitude(0.707107);
|
|
sine1.frequency(750.0f);
|
|
sine1.amplitude(0.707107);
|
|
|
|
// Build the CESSB SSB transmitter
|
|
// The WAV file has carefully controlled 0.707 peaks. We bring these to 1.000
|
|
mixer4_0.gain(0, 1.41421356f); // Play WAV file on
|
|
mixer4_0.gain(2, 0.0); // Sine Wave 1 off
|
|
|
|
cessb1.setSampleRate_Hz(48000.0f);
|
|
// Set input, correction, and output gains
|
|
float32_t Pre_CESSB_Gain = 1.5f; // Use to set amount of clipping, 1.0 to 2.0f, 3 is excessive
|
|
cessb1.setGains(Pre_CESSB_Gain, 1.4f, 1.0f);
|
|
cessb1.setSideband(false);
|
|
pLevelData = cessb1.getLevels(0); // Gets pointer to struct
|
|
|
|
// Generate SSB at 15 kHz from zero-IF signal of CESSB generator
|
|
iqMixer1.useTwoChannel(true);
|
|
iqMixer1.frequency(15000);
|
|
mixer4_2.gain(1, 1.0f); // 1.0f for LSB, -1.0f for USB
|
|
|
|
// Need a receiver for the SSB transmitter to let us hear the results.
|
|
iqMixer2.frequency(15000.0f);
|
|
iqMixer2.useTwoChannel(false);
|
|
filter90deg1.begin(hilbert251A, 251);
|
|
mixer4_1.gain(0, -1.0f); // LSB, + for USB
|
|
audioOutput.setGain(0.02); // <<< Output volume control
|
|
fft1.setOutputType(FFT_DBFS);
|
|
fft1.windowFunction(AudioWindowBlackmanHarris1024);
|
|
fft1.setNAverage(16);
|
|
ttt = millis(); // Time test audio
|
|
tp=millis();
|
|
}
|
|
|
|
void playFile(const char *filename) {
|
|
if(playWav1.isPlaying())
|
|
return;
|
|
Serial.println("");
|
|
Serial.print("Playing file: ");
|
|
Serial.println(filename);
|
|
playWav1.play(filename); // Start playing the file.
|
|
// A brief delay for the library read WAV info
|
|
delay(25);
|
|
Serial.print("WAV file format = "); Serial.println(pCurrentWavData->audio_format);
|
|
Serial.print("WAV number channels = "); Serial.println(pCurrentWavData->num_channels);
|
|
Serial.print("WAV File Sample Rate = "); Serial.println(pCurrentWavData->sample_rate);
|
|
Serial.print("Number of bits per Sample = "); Serial.println(pCurrentWavData->bits);
|
|
Serial.print("File length, seconds = ");
|
|
Serial.println(0.001f*(float32_t)playWav1.lengthMillis(), 3);
|
|
}
|
|
|
|
void loop() {
|
|
uint32_t tt=millis() - ttt;
|
|
if(tt < 2000)
|
|
{
|
|
// Thanks to W9GR for the test file, W9GR48.WAV. This is intended for testing
|
|
// the CESSB radio transmission system.
|
|
playFile("W9GR48.WAV");
|
|
mixer4_0.gain(0, 1.41421356f); // Play WAV file on
|
|
mixer4_0.gain(1, 0.0f); // Sine Wave 1 off
|
|
}
|
|
else if(tt > 12300 && tt<13300)
|
|
{
|
|
mixer4_0.gain(1, 0.0f); // Play WAV file off
|
|
// The following puts a 1-sec 750 Hz, full amplitude tone into the input
|
|
// .707 on the generator and 1.414 here make the peak sine wave 1.000 at the CESSB input
|
|
mixer4_0.gain(1, 1.41421356f); // Sine Wave 1 on, 750 Hz
|
|
}
|
|
else if(tt >= 13300)
|
|
{
|
|
mixer4_0.gain(0, 1.41421356f); // Play WAV file on
|
|
mixer4_0.gain(1, 0.0f); // Sine Wave 1 off
|
|
ttt = millis(); // Start again
|
|
}
|
|
delay(1);
|
|
|
|
// Un-comment the following to print out the spectrum
|
|
/*
|
|
if(fft1.available() && ++cntFFT>100 && cntFFT<102)
|
|
{
|
|
for(int kk=0; kk<512; kk++)
|
|
{
|
|
Serial.print(46.875f*(float32_t)kk); Serial.print(",");
|
|
Serial.println(fft1.read(kk));
|
|
}
|
|
}
|
|
*/
|
|
|
|
if(cessb1.levelDataCount() > 300) // Typically 300 to 3000
|
|
{
|
|
cessb1.getLevels(1); // Cause write of data to struct & reset
|
|
|
|
// Detailed Report
|
|
Serial.print(10.0f*log10f(pLevelData->pwr0));
|
|
Serial.print(" In Ave Pwr Out ");
|
|
Serial.println(10.0f*log10f(pLevelData->pwr1));
|
|
Serial.print(20.0f*log10f(pLevelData->peak0));
|
|
Serial.print(" In Peak Out ");
|
|
Serial.println(20.0f*log10f(pLevelData->peak1));
|
|
Serial.print(pLevelData->peak0, 6);
|
|
Serial.print(" In Peak Volts Out ");
|
|
Serial.println(pLevelData->peak1, 6);
|
|
Serial.print("Enhancement = ");
|
|
float32_t enhance = (10.0f*log10f(pLevelData->pwr1) - 20.0f*log10f(pLevelData->peak1)) -
|
|
(10.0f*log10f(pLevelData->pwr0) - 20.0f*log10f(pLevelData->peak0));
|
|
if(enhance<1.0f) enhance = 1.0f;
|
|
Serial.print(enhance); Serial.println(" dB");
|
|
|
|
/*
|
|
// CSV Report suitable for entering to spread sheet
|
|
// InAve, InPk, OutAve, OutPk, EnhancementdB
|
|
Serial.print(pLevelData->pwr0, 5); Serial.print(",");
|
|
Serial.print(pLevelData->peak0, 5); Serial.print(",");
|
|
Serial.print(pLevelData->pwr1, 5); Serial.print(",");
|
|
Serial.print(pLevelData->peak1, 5); Serial.print(",");
|
|
float32_t enhance = (10.0f*log10f(pLevelData->pwr1) - 20.0f*log10f(pLevelData->peak1)) -
|
|
(10.0f*log10f(pLevelData->pwr0) - 20.0f*log10f(pLevelData->peak0));
|
|
if(enhance<1.0f) enhance = 1.0f;
|
|
Serial.println(enhance);
|
|
*/
|
|
}
|
|
}
|
|
|