You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
OpenAudio_ArduinoLibrary/AudioAlignLR_F32.cpp

219 lines
8.1 KiB

/*------------------------------------------------------------------------------------
AudioAlignLR_F32.cpp 3-21-2022
Author: Bob Larkin W7PUA
Date: 28 Feb 2022
See AudioAlignLR_F32.h for notes.
Copyright (c) 2022 Robert Larkin
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
------------------------------------------------------------------------------- */
#include "AudioAlignLR_F32.h"
void AudioAlignLR_F32::update(void) { static uint32_t nnn = 0;
audio_block_f32_t *block_L,*block_R;
audio_block_f32_t *block2_L,*block2_R;
audio_block_f32_t *blockOutTestSignal;
uint16_t i, j, k;
// uint32_t t0 = micros(); // Measure time
if(currentTPinfo.TPstate == TP_IDLE) return;
block_L = AudioStream_F32::receiveWritable_f32(0);
if (!block_L) return;
block_R = AudioStream_F32::receiveWritable_f32(1);
if (!block_R) {
AudioStream_F32::release(block_L);
return;
}
block2_L = AudioStream_F32::allocate_f32();
if (!block2_L)
{
AudioStream_F32::release(block_L);
AudioStream_F32::release(block_R);
return;
}
block2_R = AudioStream_F32::allocate_f32();
if (!block2_R)
{
AudioStream_F32::release(block_L);
AudioStream_F32::release(block_R);
AudioStream_F32::release(block2_L);
return;
}
if(currentTPinfo.TPsignalHardware == TP_SIGNAL_CODEC)
{
blockOutTestSignal = AudioStream_F32::allocate_f32();
if (!blockOutTestSignal)
{
AudioStream_F32::release(block_L);
AudioStream_F32::release(block_R);
AudioStream_F32::release(block2_L);
AudioStream_F32::release(block2_R);
return;
}
}
// Input data is now in block_L and block_R. Filter from there to
// block2_L and block2_R
if(useLRfilter)
{
arm_fir_f32(&fir_instL, block_L->data, block2_L->data, block_L->length);
arm_fir_f32(&fir_instR, block_R->data, block2_R->data, block_R->length);
}
else
for(i=0; i<block_L->length; i++)
{
block2_L->data[i] = block_L->data[i];
block2_R->data[i] = block_R->data[i];
}
// Input data is now in block_L and block_R. Filtered data is in
// block2_L and block2_R
// One of these next 2 may be needed. They are saved for next update
TPextraL = block_L->data[127];
TPextraR = block_R->data[127];
// Find four cross-correlations for time shifted L-R combinations.
// Use filtered data
if(currentTPinfo.TPstate==TP_MEASURE)
{
currentTPinfo.xcVal[0]=0.0f; // In phase
currentTPinfo.xcVal[1]=0.0f; // Shift I
currentTPinfo.xcVal[2]=0.0f; // DNApply, shift 2 time slots
currentTPinfo.xcVal[3]=0.0f; // Shift Q
for(j=0; j<4; j++)
{
for(k=0; k<124; k++) // Use sum of 124 x-c values on filtered data
{
currentTPinfo.xcVal[j] += block2_L->data[k] * block2_R->data[k+j];
}
}
currentTPinfo.xNorm = 0.0f;
for(k=0; k<4; k++)
currentTPinfo.xNorm += fabsf( currentTPinfo.xcVal[k] );
// Decision time. Still in Measure. Can we leave? Need one more update()?
// Sort out the offset that is cross-correlated
if(currentTPinfo.nMeas>5 && currentTPinfo.xNorm > 0.0001f) // Get past junk at startup
{
currentTPinfo.TPerror = ERROR_TP_NONE; // Change later if not true
needOneMore = true; // Change later if not true
// Redo (12 March 2022) with normalized values
float32_t xcN[4];
for(j=0; j<4; j++)
xcN[j] = currentTPinfo.xcVal[j]/currentTPinfo.xNorm;
// Look for a good cross-correlation with the normalized values
if(xcN[0] - xcN[2] > 0.75f)
currentTPinfo.neededShift = 0;
else if(xcN[1] - xcN[3] > 0.75f)
currentTPinfo.neededShift = 1;
else if(xcN[3] - xcN[1] > 0.75f)
currentTPinfo.neededShift = -1;
else // Don't have a combination awith much cross-correlation
{
currentTPinfo.neededShift = 0; // Just a guess
currentTPinfo.TPerror = ERROR_TP_BAD_DATA; // Probably no, or low signal
needOneMore = false; // Not yet
}
}
if(currentTPinfo.nMeas>5 && needOneMore==false && currentTPinfo.TPerror==ERROR_TP_NONE)
{
needOneMore = true; // Last may have been partial data set
}
else if(needOneMore==true && currentTPinfo.TPerror==ERROR_TP_NONE) // We're done measuring
{
currentTPinfo.TPstate = TP_RUN; // Not TP_MEASURE. State doesn't change from here on.
needOneMore = false;
if(currentTPinfo.TPsignalHardware == TP_SIGNAL_CODEC)
digitalWrite(controlPinNumber, 0 ^ (uint16_t)controlPinInvert); // Stop test audio
// Serial.println("Stop Square Wave audio path");
}
else // Try again from the start
{
// Serial.println("Re-start TP Measure");
currentTPinfo.TPstate = TP_MEASURE;
if(currentTPinfo.TPsignalHardware==TP_SIGNAL_CODEC)
digitalWrite(controlPinNumber, 1 & (uint16_t)controlPinInvert);
currentTPinfo.neededShift = 0;
currentTPinfo.TPerror = ERROR_TP_EARLY;
needOneMore = false;
}
} // End state==TP_MEASURE
else if(currentTPinfo.TPstate == TP_RUN)
{
if(currentTPinfo.neededShift == 0)
{
// Serial.println("No shift");
}
else if(currentTPinfo.neededShift == 1)
{
// Serial.println("Shift 1");
for(i=127; i>0; i--)
block_L->data[i] = block_L->data[i-1]; // Move all down one
block_L->data[0] = TPextraL; // From last update
// Note: block_L->data[127] is saved for next update, and not
// transmitted now.
}
else if(currentTPinfo.neededShift == -1)
{
// Serial.println("Shift -1");
for(i=127; i>0; i--)
block_R->data[i] = block_R->data[i-1];
block_R->data[0] = TPextraR;
}
// Only transmit data in TP_RUN
AudioStream_F32::transmit(block_L, 0); // Shifted
AudioStream_F32::transmit(block_R, 1); // as needed
} // End state==TP_RUN
// But, always release the blocks
AudioStream_F32::release(block_L);
AudioStream_F32::release(block_R);
AudioStream_F32::release(block2_L);
AudioStream_F32::release(block2_R);
// TP_MEASURE needs a fs/4 test signal
if(currentTPinfo.TPsignalHardware == TP_SIGNAL_CODEC)
{
if(currentTPinfo.TPstate == TP_MEASURE)
{
for(int kk=0; kk<128; kk++) // Generate fs/4 square wave
{
// A +/- 0.8 square wave at fs/4 Hz
blockOutTestSignal->data[kk] = -0.8+1.6*(float32_t)((kk/2)&1);
}
}
AudioStream_F32::transmit(blockOutTestSignal, 2); // NOTE: Goes to third output
AudioStream_F32::release(blockOutTestSignal);
}
currentTPinfo.nMeas++;
// Serial.println(micros() - t0); // for timing
}