You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
218 lines
8.8 KiB
218 lines
8.8 KiB
/* CESSB1.ino
|
|
*
|
|
* This INO tests the Dave Hershberger Controlled Envelope Single Sideband
|
|
* transmit generator radioCESSBtransmit_F32. This was developed By W9GR
|
|
* with the aim to "allow your rig to output more average power while
|
|
* keeping peak envelope power PEP the same". The increase in perceived
|
|
* loudness can be up to 4dB without any audible increase in distortion
|
|
* and without making you sound "processed." See radioCESSBTransmit_F32.h
|
|
* for more information and references.
|
|
*
|
|
* Your microSD card must have the WAV file W9GR48.WAV loaded to it. Source:
|
|
* https://github.com/chipaudette/OpenAudio_ArduinoLibrary/blob/master/utility/
|
|
*
|
|
* The SD card may connect to different pins, depending on the
|
|
* hardware you are using. Configure the SD card
|
|
* pins to match your hardware. It is set for T4.x Rev D PJRC
|
|
* Teensy Audio Adaptor card here.
|
|
*
|
|
* This example code is in the public domain.
|
|
*/
|
|
|
|
#include <Audio.h>
|
|
#include <Wire.h>
|
|
#include <SPI.h>
|
|
#include <SD.h>
|
|
#include "OpenAudio_ArduinoLibrary.h"
|
|
|
|
// Normal input is from the WAV file with W9GR voice.
|
|
// An alternative is two tones. Compile that with the following define.
|
|
// #define USE_TWO_TONE
|
|
|
|
// T3.x supported sample rates: 2000, 8000, 11025, 16000, 22050, 24000, 32000, 44100, 44117, 48000,
|
|
// 88200, 88235 (44117*2), 95680, 96000, 176400, 176470, 192000
|
|
// T4.x supports any sample rate the codec will handle.
|
|
const float sample_rate_Hz = 48000.0f;
|
|
const int audio_block_samples = 128; // Always 128, which is AUDIO_BLOCK_SAMPLES from AudioStream.h
|
|
AudioSettings_F32 audio_settings(sample_rate_Hz, audio_block_samples);
|
|
|
|
#ifdef USE_TWO_TONE
|
|
AudioSynthWaveformSine_F32 sine3(audio_settings); //xy=231,444
|
|
AudioSynthWaveformSine_F32 sine4(audio_settings); //xy=259,345
|
|
AudioMixer4_F32 mixer4_4; //xy=405,427
|
|
#endif
|
|
AudioSDPlayer_F32 playWav1(audio_settings); //xy=111,51
|
|
radioCESSBtransmit_F32 cessb1(audio_settings);
|
|
RadioIQMixer_F32 iqMixer2(audio_settings); //xy=100,300
|
|
AudioFilter90Deg_F32 filter90deg1(audio_settings); //xy=250,300
|
|
RadioIQMixer_F32 iqMixer1(audio_settings); //xy=250,150
|
|
AudioAnalyzeRMS_F32 rms1; //xy=300,50
|
|
AudioMixer4_F32 mixer4_1; //xy=400,310
|
|
AudioMixer4_F32 mixer4_2; //xy=400,150
|
|
AudioOutputI2S_F32 audioOutput(audio_settings); //xy=520,250
|
|
AudioAnalyzeFFT1024_F32 fft1; //xy=550,125
|
|
|
|
#ifdef USE_TWO_TONE
|
|
AudioConnection_F32 patchCorda(sine3, 0, mixer4_4, 1);
|
|
AudioConnection_F32 patchCordb(sine4, 0, mixer4_4, 0);
|
|
AudioConnection_F32 patchCordc(mixer4_4, 0, cessb1, 0);
|
|
#else
|
|
AudioConnection_F32 patchCord5(playWav1, 0, cessb1, 0);
|
|
#endif
|
|
AudioConnection_F32 patchCord1(cessb1, 0, iqMixer1, 0);
|
|
AudioConnection_F32 patchCord2(cessb1, 1, iqMixer1, 1);
|
|
AudioConnection_F32 patchCord9(iqMixer1, 0, mixer4_2, 0);
|
|
AudioConnection_F32 patchCord10(iqMixer1, 1, mixer4_2, 1);
|
|
AudioConnection_F32 patchCord13(mixer4_2, fft1); // Transmitter output
|
|
// mixer4_2 is transmitter SSB output, iqMixer2 is receiver input
|
|
AudioConnection_F32 patchCord14(mixer4_2, 0, iqMixer2, 0);
|
|
AudioConnection_F32 patchCord3(iqMixer2, 0, filter90deg1, 0);
|
|
AudioConnection_F32 patchCord4(iqMixer2, 1, filter90deg1, 1);
|
|
AudioConnection_F32 patchCord7(filter90deg1, 0, mixer4_1, 0);
|
|
AudioConnection_F32 patchCord8(filter90deg1, 1, mixer4_1, 1);
|
|
AudioConnection_F32 patchCord11(mixer4_1, 0, audioOutput, 0);
|
|
AudioConnection_F32 patchCord12(mixer4_1, 0, audioOutput, 1);
|
|
AudioControlSGTL5000 sgtl5000_1; //xy=582,327
|
|
|
|
// Use these with the Teensy 4.x Rev D Audio Shield (NOT for T3.x)
|
|
#define SDCARD_CS_PIN 10
|
|
#define SDCARD_MOSI_PIN 11
|
|
#define SDCARD_SCK_PIN 13
|
|
|
|
// Filter for AudioFilter90Deg_F32 hilbert1, for the test receiver.
|
|
#include "hilbert251A.h"
|
|
|
|
// This provides information about the current WAV file to this .INO
|
|
struct wavData* pCurrentWavData;
|
|
struct levels* pLevelData;
|
|
uint32_t writeOne = 0;
|
|
|
|
uint32_t cntFFT = 0;
|
|
|
|
void setup() { // ********** SETUP **********
|
|
Serial.begin(9600); delay(1000);
|
|
Serial.println("*** F32 WAV from SD Card ***");
|
|
AudioMemory_F32(70, audio_settings);
|
|
|
|
pCurrentWavData = playWav1.getCurrentWavData();
|
|
|
|
sgtl5000_1.enable();
|
|
|
|
SPI.setMOSI(SDCARD_MOSI_PIN);
|
|
SPI.setSCK(SDCARD_SCK_PIN);
|
|
Serial.print("SD.begin() returns ");
|
|
Serial.println(SD.begin(SDCARD_CS_PIN));
|
|
|
|
#ifdef USE_TWO_TONE
|
|
// Two-tone test, multiples of 48000/1024 Hz
|
|
sine3.frequency(468.75f);
|
|
sine3.amplitude(0.5f);
|
|
|
|
sine4.frequency(703.125f);
|
|
sine4.amplitude(0.5f);
|
|
#endif
|
|
|
|
// Build the CESSB SSB transmitter
|
|
cessb1.setSampleRate_Hz(48000.0f); // Required
|
|
// Set input, correction, and output gains
|
|
float32_t Pre_CESSB_Gain = 1.5f; // Sets the amount of clipping, 1.0 to 2.0f, 3 is excessive
|
|
cessb1.setGains(Pre_CESSB_Gain, 2.0f, 1.0f);
|
|
cessb1.setSideband(false); // true reverses the sideband
|
|
pLevelData = cessb1.getLevels(0); // Gets pointer to struct
|
|
|
|
// Generate SSB at 15 kHz
|
|
iqMixer1.useTwoChannel(true);
|
|
iqMixer1.useSimple(false); // enables setGainOut()
|
|
// Following if cessb1.setSideband(false), otherwise reverse
|
|
|
|
// Compensate for window loss in FFT as well as x2 for mixers
|
|
iqMixer1.setGainOut(2.76f);
|
|
iqMixer1.frequency(13650); // 13650 for LSB, 16350 for USB
|
|
mixer4_2.gain(1, 1.0f); // 1.0f for LSB, -1.0f for USB
|
|
|
|
// A receiver for the SSB transmitter
|
|
iqMixer2.frequency(15000.0f);
|
|
iqMixer2.useTwoChannel(false);
|
|
|
|
filter90deg1.begin(hilbert251A, 251); // Set the Hilbert transform FIR filter
|
|
mixer4_1.gain(0, -1.0f); // LSB + for USB
|
|
audioOutput.setGain(0.05); // <<< Output volume control
|
|
fft1.setOutputType(FFT_DBFS);
|
|
fft1.windowFunction(AudioWindowBlackmanHarris1024);
|
|
fft1.setNAverage(16);
|
|
}
|
|
|
|
void playFile(const char *filename)
|
|
{
|
|
|
|
if(playWav1.isPlaying())
|
|
return;
|
|
Serial.println("");
|
|
Serial.print("Playing file: ");
|
|
Serial.println(filename);
|
|
// Allow for running the WAV file at a sub-rate from the Audio rate
|
|
// Two of these are defined above for 1 and 4 sub rates.
|
|
// playWav1.setSubMult(&wavQuarter);
|
|
// Start playing the file. This sketch continues to
|
|
// run while the file plays.
|
|
playWav1.play(filename);
|
|
// A brief delay for the library read WAV info
|
|
delay(25);
|
|
|
|
Serial.print("WAV file format = "); Serial.println(pCurrentWavData->audio_format);
|
|
Serial.print("WAV number channels = "); Serial.println(pCurrentWavData->num_channels);
|
|
Serial.print("WAV File Sample Rate = "); Serial.println(pCurrentWavData->sample_rate);
|
|
Serial.print("Number of bits per Sample = "); Serial.println(pCurrentWavData->bits);
|
|
Serial.print("File length, seconds = ");
|
|
Serial.println(0.001f*(float32_t)playWav1.lengthMillis(), 3);
|
|
}
|
|
|
|
void loop() {
|
|
// Thanks to W9GR for the test files. These are intended for testing
|
|
// the CESSB radio transmission system (see CESSB1.ino in the examples)
|
|
// but work well to provide a voice bandwidth test of WAV file reading.
|
|
#ifndef USE_TWO_TONE
|
|
playFile("W9GR48.WAV"); // filenames are always uppercase 8.3 format
|
|
#endif
|
|
|
|
if(fft1.available() && ++cntFFT>100 && cntFFT<102)
|
|
{
|
|
for(int kk=0; kk<512; kk++)
|
|
{
|
|
Serial.print(46.875f*(float32_t)kk); Serial.print(",");
|
|
Serial.println(fft1.read(kk));
|
|
}
|
|
}
|
|
|
|
if(cessb1.levelDataCount() > 300) // Typically 300 to 3000
|
|
{
|
|
cessb1.getLevels(1); // Cause write of data to struct & reset
|
|
|
|
/* // Detailed Report Uncomment to print
|
|
Serial.print(10.0f*log10f(pLevelData->pwr0));
|
|
Serial.print(" In Ave Pwr Out ");
|
|
Serial.println(10.0f*log10f(pLevelData->pwr1));
|
|
Serial.print(20.0f*log10f(pLevelData->peak0));
|
|
Serial.print(" In Peak Out ");
|
|
Serial.println(20.0f*log10f(pLevelData->peak1));
|
|
Serial.print(pLevelData->peak0, 6);
|
|
Serial.print(" In Peak Volts Out ");
|
|
Serial.println(pLevelData->peak1, 6);
|
|
Serial.print("Enhancement = ");
|
|
Serial.print((10.0f*log10f(pLevelData->pwr1) - 20.0f*log10f(pLevelData->peak1)) -
|
|
(10.0f*log10f(pLevelData->pwr0) - 20.0f*log10f(pLevelData->peak0)) );
|
|
Serial.println(" dB");
|
|
*/
|
|
|
|
/*
|
|
// CSV Report suitable for entering to spread sheet, Uncomment to print
|
|
// InAve, InPk, OutAve, OutPk, EnhancementdB
|
|
Serial.print(pLevelData->pwr0, 5); Serial.print(",");
|
|
Serial.print(pLevelData->peak0, 5); Serial.print(",");
|
|
Serial.print(pLevelData->pwr1, 5); Serial.print(",");
|
|
Serial.print(pLevelData->peak1, 5); Serial.print(",");
|
|
Serial.println((10.0f*log10f(pLevelData->pwr1) - 20.0f*log10f(pLevelData->peak1)) -
|
|
(10.0f*log10f(pLevelData->pwr0) - 20.0f*log10f(pLevelData->peak0)) );
|
|
*/
|
|
}
|
|
} // End loop()
|
|
|