You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
OpenAudio_ArduinoLibrary/examples/testWDRC2/testWDRC2.ino

203 lines
7.5 KiB

/* TestWDRC2.ino Bob Larkin 8 Dec 2020
*
* Test of AudioEffectWDRC2_F32 (Wide Dynamic Range Compressor)
* See AudioEffectWDRC2_F32.h for much detail and explanation.
* Choice of test signals is a single sine wave, a random sequence
* of sine waves of varying frequency and amplitude, a power
* sweep or a pulse of sine wave to see transient behavior.
*
* This version is for the Chip Audette OpenAudio_F32 Library. and
* thus has that interface structure.
*
* NOTE: As of 20 Dec 2020, the compressor AudioEffectWDRC2_F32.h
* was not finalized and could change in detail. Use here with
* this in mind.
*/
#include "Audio.h"
#include "OpenAudio_ArduinoLibrary.h"
#include "AudioEffectWDRC2_F32.h"
#define CW 0
#define RANDOM 1
#define POWER_SWEEP 2
#define PULSE 3
// Edit in one of the last four, here:
#define SIGNAL_SOURCE PULSE
AudioSynthWaveformSine_F32 sine1; // Test signal
AudioPlayQueue_F32 queue0; // Amplitude set of input
AudioMultiply_F32 mult1;
AudioEffectWDRC2_F32 compressor1; // Wide Dynamic Range Compressor
AudioFilterFIR_F32 fir;
AudioEffectGain_F32 gain0; // Sets volume sent to output
AudioEffectGain_F32 gain1; // Sets the same
AudioConvert_F32toI16 convert0; // Allow integer output driver
AudioConvert_F32toI16 convert1;
AudioOutputI2S i2sOut;
AudioConnection_F32 patchCord0(sine1, 0, mult1, 0);
AudioConnection_F32 patchCord1(queue0, 0, mult1, 1);
AudioConnection_F32 patchCord2(mult1, 0, fir, 0);
AudioConnection_F32 patchCord3(fir, 0, compressor1, 0);
AudioConnection_F32 patchCord4(compressor1, 0, gain0, 0);
AudioConnection_F32 patchCord5(fir, 0, gain1, 0);
AudioConnection_F32 patchCord6(gain0, 0, convert0, 0);
AudioConnection_F32 patchCord7(gain1, 0, convert1, 0);
AudioConnection patchCord8(convert0, 0, i2sOut, 0);
AudioConnection patchCord9(convert1, 0, i2sOut, 1);
AudioControlSGTL5000 sgtl5000_1;
uint16_t count17, count27;
float level = 0.05f;
void setup(void) {
AudioMemory(50);
AudioMemory_F32(100);
Serial.begin(300); delay(1000);
Serial.println("*** Test WDRC2 Gain Compressor **");
sine1.frequency(1000.0f);
sine1.amplitude(0.05f);
// CAUTION - If using ears on the output, adjust the following two carefully
gain0.setGain_dB(-25.0f); // Consider (-50.0f);
gain1.setGain_dB(13.0f); // Consider (-30.0f);
sgtl5000_1.enable();
// Fir Filter needs coefs, now it ts just a pass through.
count17 = 0;
count27 = 0;
#if 0
// For reference, here are the defaults from AudioEffectsWDRC_F32.h
int16_t delaySize = 256; // Any power of 2, i.e., 256, 128, 64, etc.
float gain0DB = 38.0f; // Gain, in dB for low level inputs (dependent variable)
float gainOffsetDB = 0.0f; // Raise/lower entire gain curve by this amount (post gain)
float knee1DB = -50.0f; // First knee on the gain curve
float cr1 = 3.0f; // Compression ratio on dB curve between knee1dB and knee2dB
float knee2DB = -20.0f; // Second knee on the gain curve
float cr2 = 10.0f; // Compression ratio on dB curve above knee2dB
#endif
// Edit the following to change settings
// Note: gain0 is a dependent variable, and not available as an input
compressor1.setDelayBufferSize(128);
compressor1.setOutputGainOffsetDB(0.0f);
compressor1.setKnee1LowDB(-50.0f);
compressor1.setCompressionRatioMiddleDB(3.0f);
compressor1.setKnee2HighDB(-20.0f);
compressor1.setCompressionRatioHighDB(10.0f);
}
void loop(void)
{
float32_t* pBuff;
static uint16_t kk;
#if SIGNAL_SOURCE == CW
// Literally Continuous Wave. Edit frequency and amplitude below
pBuff = queue0.getBuffer();
if (pBuff)
{
if(count27++ == 227) // about 0.7 sec
{
sine1.frequency(1000.0f); // <--
sine1.amplitude(0.01f); // <--
Serial.print(" LowLevDB= "); Serial.print( compressor1.getLowLevelGainDB(), 3);
Serial.print(" CurInDB= "); Serial.print( compressor1.getCurrentInputDB(), 3);
Serial.print(" CurrentGainDB= "); Serial.println( compressor1.getCurrentGainDB(), 3);
count27 = 0;
}
// Multiply by 1.0 by filling queue1
for(int ii=0; ii<128; ii++)
*(pBuff + ii) = 1.0f; // Fill buffer with constant level
queue0.playBuffer(); // Starr up new 128 values
}
#elif SIGNAL_SOURCE == RANDOM
/* To give an audio signal with interest, we alter the frequency
* every 17 blocks (49 msec) and alter the level every 27 b;ocks
* (78.4 msec) The pattern keeps changing to be more interesting
* Janet thinks it is aliens. */
pBuff = queue0.getBuffer();
if (pBuff)
{
Serial.print(" CurInDB= "); Serial.print( compressor1.getCurrentInputDB(), 3);
Serial.print(" CurrentGainDB= "); Serial.println( compressor1.getCurrentGainDB(), 3);
if(count17++ == 17)
{
// Put a delay in, like between words
if(randUniform() < 0.03)
delay( (int)(1500.0*randUniform()) );
count17 = 0;
float ff = 350.0f + 700.0f*sqrtf( randUniform() );
sine1.frequency(ff); //Serial.println(ff);
}
if(count27++ == 27)
{
count27 = 0;
level = 1.0f*powf( randUniform(), 2 ); // 0 to 1, emphasizing 0 end
}
for(int ii=0; ii<128; ii++)
*(pBuff + ii) = level; // Fill buffer with constant level
queue0.playBuffer(); // Starr up new 128 values
}
#elif SIGNAL_SOURCE == POWER_SWEEP
pBuff = queue0.getBuffer();
if (pBuff)
{
if(count17++ == 17)
{
count17 = 0;
level *= 1.05f;
if(level > 0.99)
{
level=0.001;
delay(200);
}
Serial.print(" CurInDB= "); Serial.print( compressor1.getCurrentInputDB(), 3);
Serial.print(" CurrentGainDB= "); Serial.println( compressor1.getCurrentGainDB(), 3);
}
for(int ii=0; ii<128; ii++)
*(pBuff + ii) = level;
queue0.playBuffer();
}
#elif SIGNAL_SOURCE == PULSE
pBuff = queue0.getBuffer();
if (pBuff)
{
for(int ii=0; ii<128; ii++)
*(pBuff + ii) = 1.0f;
queue0.playBuffer();
// A pulse, repeats every 3 minutes or so
if(count17 == 5) sine1.amplitude(0.0f); // Settling
else if(count17 == 498) compressor1.printOn(true); //record it
else if(count17 == 500) sine1.amplitude(0.03f);
else if(count17 == 510) sine1.amplitude(0.0f);
else if(count17 == 700) compressor1.printOn(false);
// or build your own transient test pulse here
count17++;
}
#endif
}
/* randUniform() - Returns random number, uniform on (0, 1)
* The "Even Quicker" uniform random sample generator from D. E. Knuth and
* H. W. Lewis and described in Chapter 7 of "Numerical Receipes in C",
* 2nd ed, with the comment "this is about as good as any 32-bit linear
* congruential generator, entirely adequate for many uses."
*/
#define FL_ONE 0X3F800000
#define FL_MASK 0X007FFFFF
float randUniform(void)
{
static uint32_t idum = 12345;
union {
uint32_t i32;
float f32;
} uinf;
idum = (uint32_t)1664525 * idum + (uint32_t)1013904223;
// return (*(float *)&it); // Cute convert to float but gets compiler warning
uinf.i32 = FL_ONE | (FL_MASK & idum); // So do the same thing with a union
return uinf.f32 - 1.0f;
}