/* analyze_fft1024_F32.cpp Converted from Teensy I16 Audio Library * This version uses float F32 inputs. See comments at analyze_fft1024_F32.h * Converted to use half-length FFT 17 March 2021 RSL * * Conversion parts copyright (c) Bob Larkin 2021 * * Audio Library for Teensy 3.X * Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com * * Development of this audio library was funded by PJRC.COM, LLC by sales of * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop * open source software by purchasing Teensy or other PJRC products. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include <Arduino.h> #include "analyze_fft1024_F32.h" // Move audio data from an audio_block_f32_t to the FFT instance buffer. // This is for 128 numbers per block, only. static void copy_to_fft_buffer(void *destination, const void *source) { const float *src = (const float *)source; float *dst = (float *)destination; for (int i=0; i < 128; i++) { *dst++ = *src++; // real sample for half-length FFT } } static void apply_window_to_fft_buffer(void *buffer, const void *window) { float *buf = (float *)buffer; const float *win = (float *)window; for(int i=0; i<NFFT; i++) buf[i] *= *win++; } void AudioAnalyzeFFT1024_F32::update(void) { audio_block_f32_t *block; float outDC=0.0f; float magsq=0.0f; block = AudioStream_F32::receiveReadOnly_f32(); if (!block) return; switch (state) { case 0: blocklist[0] = block; state = 1; break; case 1: blocklist[1] = block; state = 2; break; case 2: blocklist[2] = block; state = 3; break; case 3: blocklist[3] = block; state = 4; break; case 4: blocklist[4] = block; // Now the post FT processing for using half-length transform // FFT was in state==7, but it loops around to here. Does some // zero data at startup that is harmless. count++; // Next do non-coherent averaging for(int i=0; i<NFFT_D2; i++) { if(i>0) { float rns = 0.5f*(fft_buffer[2*i] + fft_buffer[NFFT-2*i]); float ins = 0.5f*(fft_buffer[2*i+1] + fft_buffer[NFFT-2*i+1]); float rnd = 0.5f*(fft_buffer[2*i] - fft_buffer[NFFT-2*i]); float ind = 0.5f*(fft_buffer[2*i+1] - fft_buffer[NFFT-2*i+1]); float xr = rns + cosN[i]*ins - sinN[i]*rnd; float xi = ind - sinN[i]*ins - cosN[i]*rnd; magsq = xr*xr + xi*xi; } else { magsq = outDC*outDC; // Do the DC term } if(count==1) // Starting new average sumsq[i] = magsq; else if (count<=nAverage) // Adding on to average sumsq[i] += magsq; } if (count >= nAverage) { // Average is finished // Set outputflag false here to minimize reads of output[] data // when it is being updated. outputflag = false; count = 0; float inAf = 1.0f/(float)nAverage; float kMaxDB = 20.0*log10f((float)NFFT_D2); // 54.1854 for 1024 for(int i=0; i<NFFT_D2; i++) { if(outputType==FFT_RMS) output[i] = sqrtf(inAf*sumsq[i]); else if(outputType==FFT_POWER) output[i] = inAf*sumsq[i]; else if(outputType==FFT_DBFS) { if(sumsq[i]>0.0f) output[i] = 10.0f*log10f(inAf*sumsq[i]) - kMaxDB; // Scaled to FS sine wave else output[i] = -193.0f; // lsb for 23 bit mantissa } else output[i] = 0.0f; } // End, set output[i] over all NFFT_D2 outputflag = true; } // End of average is finished state = 5; break; case 5: blocklist[5] = block; state = 6; break; case 6: blocklist[6] = block; state = 7; break; case 7: blocklist[7] = block; // We have 4 previous blocks pointed to by blocklist[]: copy_to_fft_buffer(fft_buffer+0x000, blocklist[0]->data); copy_to_fft_buffer(fft_buffer+0x080, blocklist[1]->data); copy_to_fft_buffer(fft_buffer+0x100, blocklist[2]->data); copy_to_fft_buffer(fft_buffer+0x180, blocklist[3]->data); // and 4 new blocks, just gathered: copy_to_fft_buffer(fft_buffer+0x200, blocklist[4]->data); copy_to_fft_buffer(fft_buffer+0x280, blocklist[5]->data); copy_to_fft_buffer(fft_buffer+0x300, blocklist[6]->data); copy_to_fft_buffer(fft_buffer+0x380, blocklist[7]->data); if (pWin) apply_window_to_fft_buffer(fft_buffer, window); outDC = 0.0f; for(int i=0; i<NFFT; i++) outDC += fft_buffer[i]; outDC /= ((float)NFFT); #if defined(__IMXRT1062__) // Teensyduino core for T4.x supports arm_cfft_f32 // arm_cfft_f32 (const arm_cfft_instance_f32 *S, float32_t *p1, uint8_t ifftFlag, uint8_t bitReverseFlag) arm_cfft_f32 (&Sfft, fft_buffer, 0, 1); #else // For T3.x go back to old (deprecated) style (check radix2/radix4)<<< arm_cfft_radix2_f32(&fft_inst, fft_buffer); #endif // FFT output is now in fft_buffer. Pick up processing at state==4. AudioStream_F32::release(blocklist[0]); AudioStream_F32::release(blocklist[1]); AudioStream_F32::release(blocklist[2]); AudioStream_F32::release(blocklist[3]); blocklist[0] = blocklist[4]; blocklist[1] = blocklist[5]; blocklist[2] = blocklist[6]; blocklist[3] = blocklist[7]; state = 4; break; } // End switch(state) } // End update()