//ifndef _BTNRH_FFT_H //define _BTNRH_FFT_H #include "BTNRH_rfft.h" #include //#include "chapro.h" //#include "cha_ff.h" /***********************************************************/ // FFT functions adapted from G. D. Bergland, "Subroutines FAST and FSST," (1979). // In IEEE Acoustics, Speech, and Signal Processing Society. // "Programs for Digital Signal Processing," IEEE Press, New York, namespace BTNRH_FFT { static __inline int ilog2(int n) { int m; for (m = 1; m < 32; m++) if (n == (1 << m)) return (m); return (-1); } static __inline int bitrev(int ii, int m) { // Was: register int jj; RSL 9 Oct 2024 int jj; jj = ii & 1; --m; while (--m > 0) { ii >>= 1; jj <<= 1; jj |= ii & 1; } return (jj); } static __inline void rad2(int ii, float *x0, float *x1) { int k; float t; for (k = 0; k < ii; k++) { t = x0[k] + x1[k]; x1[k] = x0[k] - x1[k]; x0[k] = t; } } static __inline void reorder1(int m, float *x) { int j, k, kl, n; float t; k = 4; kl = 2; n = 1 << m; for (j = 4; j <= n; j += 2) { if (k > j) { t = x[j - 1]; x[j - 1] = x[k - 1]; x[k - 1] = t; } k -= 2; if (k <= kl) { k = 2 * j; kl = j; } } } static __inline void reorder2(int m, float *x) { int ji, ij, n; float t; n = 1 << m; for (ij = 0; ij <= (n - 2); ij += 2) { ji = bitrev(ij >> 1, m) << 1; if (ij < ji) { t = x[ij]; x[ij] = x[ji]; x[ji] = t; t = x[ij + 1]; x[ij + 1] = x[ji + 1]; x[ji + 1] = t; } } } /***********************************************************/ // rcfft static void rcrad4(int ii, int nn, float *x0, float *x1, float *x2, float *x3, float *x4, float *x5, float *x6, float *x7) { double arg, tpiovn; float c1, c2, c3, s1, s2, s3, pr, pi, r1, r5; float t0, t1, t2, t3, t4, t5, t6, t7; int i0, i4, j, j0, ji, jl, jr, jlast, k, k0, kl, m, n, ni; n = nn / 4; for (m = 1; (1 << m) < n; m++) continue; tpiovn = 2 * M_PI / nn; ji = 3; jl = 2; jr = 2; ni = (n + 1) / 2; for (i0 = 0; i0 < ni; i0++) { if (i0 == 0) { for (k = 0; k < ii; k++) { t0 = x0[k] + x2[k]; t1 = x1[k] + x3[k]; x2[k] = x0[k] - x2[k]; x3[k] = x1[k] - x3[k]; x0[k] = t0 + t1; x1[k] = t0 - t1; } if (nn > 4) { k0 = ii * 4; kl = k0 + ii; for (k = k0; k < kl; k++) { pr = (float) (M_SQRT1_2 * (x1[k] - x3[k])); pi = (float) (M_SQRT1_2 * (x1[k] + x3[k])); x3[k] = x2[k] + pi; x1[k] = pi - x2[k]; x2[k] = x0[k] - pr; x0[k] += pr; } } } else { arg = tpiovn * bitrev(i0, m); c1 = cosf(arg); s1 = sinf(arg); c2 = c1 * c1 - s1 * s1; s2 = c1 * s1 + c1 * s1; c3 = c1 * c2 - s1 * s2; s3 = c2 * s1 + s2 * c1; i4 = ii * 4; j0 = jr * i4; k0 = ji * i4; jlast = j0 + ii; for (j = j0; j < jlast; j++) { k = k0 + j - j0; r1 = x1[j] * c1 - x5[k] * s1; r5 = x1[j] * s1 + x5[k] * c1; t2 = x2[j] * c2 - x6[k] * s2; t6 = x2[j] * s2 + x6[k] * c2; t3 = x3[j] * c3 - x7[k] * s3; t7 = x3[j] * s3 + x7[k] * c3; t0 = x0[j] + t2; t4 = x4[k] + t6; t2 = x0[j] - t2; t6 = x4[k] - t6; t1 = r1 + t3; t5 = r5 + t7; t3 = r1 - t3; t7 = r5 - t7; x0[j] = t0 + t1; x7[k] = t4 + t5; x6[k] = t0 - t1; x1[j] = t5 - t4; x2[j] = t2 - t7; x5[k] = t6 + t3; x4[k] = t2 + t7; x3[j] = t3 - t6; } jr += 2; ji -= 2; if (ji <= jl) { ji = 2 * jr - 1; jl = jr; } } } } //----------------------------------------------------------- static int rcfft2(float *x, int m) { int ii, nn, m2, it, n; n = 1 << m;; m2 = m / 2; // radix 2 if (m <= m2 * 2) { nn = 1; } else { nn = 2; ii = n / nn; rad2(ii, x, x + ii); } // radix 4 if (m2 != 0) { for (it = 0; it < m2; it++) { nn = nn * 4; ii = n / nn; rcrad4(ii, nn, x, x + ii, x + 2 * ii, x + 3 * ii, x, x + ii, x + 2 * ii, x + 3 * ii); } } // re-order reorder1(m, x); reorder2(m, x); for (it = 3; it < n; it += 2) x[it] = -x[it]; x[n] = x[1]; x[1] = 0.0; x[n + 1] = 0.0; return (0); } /***********************************************************/ // rcfft static void crrad4(int jj, int nn, float *x0, float *x1, float *x2, float *x3, float *x4, float *x5, float *x6, float *x7) { double arg, tpiovn; float c1, c2, c3, s1, s2, s3; float t0, t1, t2, t3, t4, t5, t6, t7; int ii, j, j0, ji, jr, jl, jlast, j4, k, k0, kl, m, n, ni; tpiovn = 2 * M_PI / nn; ji = 3; jl = 2; jr = 2; n = nn / 4; for (m = 1; (1 << m) < n; m++) continue; ni = (n + 1) / 2; for (ii = 0; ii < ni; ii++) { if (ii == 0) { for (k = 0; k < jj; k++) { t0 = x0[k] + x1[k]; t1 = x0[k] - x1[k]; t2 = x2[k] * 2; t3 = x3[k] * 2; x0[k] = t0 + t2; x2[k] = t0 - t2; x1[k] = t1 + t3; x3[k] = t1 - t3; } if (nn > 4) { k0 = jj * 4; kl = k0 + jj; for (k = k0; k < kl; k++) { t2 = x0[k] - x2[k]; t3 = x1[k] + x3[k]; x0[k] = (x0[k] + x2[k]) * 2; x2[k] = (x3[k] - x1[k]) * 2; x1[k] = (float) ((t2 + t3) * M_SQRT2); x3[k] = (float) ((t3 - t2) * M_SQRT2); } } } else { arg = tpiovn * bitrev(ii, m); c1 = cosf(arg); s1 = -sinf(arg); c2 = c1 * c1 - s1 * s1; s2 = c1 * s1 + c1 * s1; c3 = c1 * c2 - s1 * s2; s3 = c2 * s1 + s2 * c1; j4 = jj * 4; j0 = jr * j4; k0 = ji * j4; jlast = j0 + jj; for (j = j0; j < jlast; j++) { k = k0 + j - j0; t0 = x0[j] + x6[k]; t1 = x7[k] - x1[j]; t2 = x0[j] - x6[k]; t3 = x7[k] + x1[j]; t4 = x2[j] + x4[k]; t5 = x5[k] - x3[j]; t6 = x5[k] + x3[j]; t7 = x4[k] - x2[j]; x0[j] = t0 + t4; x4[k] = t1 + t5; x1[j] = (t2 + t6) * c1 - (t3 + t7) * s1; x5[k] = (t2 + t6) * s1 + (t3 + t7) * c1; x2[j] = (t0 - t4) * c2 - (t1 - t5) * s2; x6[k] = (t0 - t4) * s2 + (t1 - t5) * c2; x3[j] = (t2 - t6) * c3 - (t3 - t7) * s3; x7[k] = (t2 - t6) * s3 + (t3 - t7) * c3; } jr += 2; ji -= 2; if (ji <= jl) { ji = 2 * jr - 1; jl = jr; } } } } //----------------------------------------------------------- static int crfft2(float *x, int m) { int n, i, it, nn, jj, m2; n = 1 << m; x[1] = x[n]; m2 = m / 2; // re-order for (i = 3; i < n; i += 2) x[i] = -x[i]; reorder2(m, x); reorder1(m, x); // radix 4 if (m2 != 0) { nn = 4 * n; for (it = 0; it < m2; it++) { nn = nn / 4; jj = n / nn; crrad4(jj, nn, x, x + jj, x + 2 * jj, x + 3 * jj, x, x + jj, x + 2 * jj, x + 3 * jj); } } // radix 2 if (m > m2 * 2) { jj = n / 2; rad2(jj, x, x + jj); } return (0); } /***********************************************************/ // real-to-complex FFT //FUNC(void) void cha_fft_rc(float *x, int n) { int m; // assume n is a power of two m = ilog2(n); rcfft2(x, m); } // complex-to-real inverse FFT //FUNC(void) void cha_fft_cr(float *x, int n) { int i, m; // assume n is a power of two m = ilog2(n); crfft2(x, m); // scale inverse by 1/n for (i = 0; i < n; i++) { x[i] /= n; } } }; //endif