/* analyze_fft_iq_F32.cpp * * Converted to F32 floating point input and also extended * for complex I and Q inputs * * Adapted all I/O to be F32 floating point for OpenAudio_ArduinoLibrary * * Future: Add outputs for I & Q FFT x2 for overlapped FFT * * Windowing None, Hann, Kaiser and Blackman-Harris. * * Conversion Copyright (c) 2021 Bob Larkin * Same MIT license as PJRC: * * Audio Library for Teensy 3.X * Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com * * Development of this audio library was funded by PJRC.COM, LLC by sales of * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop * open source software by purchasing Teensy or other PJRC products. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "analyze_fft256_iq_F32.h" // Move audio data from audio_block_f32_t to the interleaved FFT instance buffer. static void copy_to_fft_buffer1(void *destination, const void *sourceI, const void *sourceQ) { const float *srcI = (const float *)sourceI; const float *srcQ = (const float *)sourceQ; float *dst = (float *)destination; for (int i=0; i < AUDIO_BLOCK_SAMPLES; i++) { *dst++ = *srcI++; // real sample, interleave //*dst++ = 0.0f; *dst++ = *srcQ++; // imag //*dst++ = 0.0f; } } static void apply_window_to_fft_buffer1(void *fft_buffer, const void *window) { float *buf = (float *)fft_buffer; // 0th entry is real (do window) 1th is imag const float *win = (float *)window; for (int i=0; i < 256; i++) { buf[2*i] *= *win++; // real buf[2*i + 1] *= *win++; // imag } } void AudioAnalyzeFFT256_IQ_F32::update(void) { audio_block_f32_t *block_i,*block_q; block_i = receiveReadOnly_f32(0); if (!block_i) return; block_q = receiveReadOnly_f32(1); if (!block_q) { release(block_i); return; } // Here with two new blocks of data // prevblock_i and _q are pointers to the IQ data collected last update() if (!prevblock_i || !prevblock_q) { // Startup prevblock_i = block_i; prevblock_q = block_q; return; // Nothing to release } // FFT is 256 and blocks are 128, so we need 2 blocks. We still do // this every 128 samples to get 50% overlap on FFT data to roughly // compensate for windowing. // ( dest, i-source, q-source ) copy_to_fft_buffer1(fft_buffer, prevblock_i->data, prevblock_q->data); copy_to_fft_buffer1(fft_buffer+256, block_i->data, block_q->data); if (pWin) apply_window_to_fft_buffer1(fft_buffer, window); arm_cfft_radix4_f32(&fft_inst, fft_buffer); // Finally the FFT count++; for (int i=0; i < 256; i++) { float ss = fft_buffer[2*i]*fft_buffer[2*i] + fft_buffer[2*i+1]*fft_buffer[2*i+1]; if(count==1) // Starting new average sumsq[i] = ss; else if (count <= nAverage) // Adding on to average sumsq[i] += ss; } if (count >= nAverage) { // Average is finished count = 0; float inAf = 1.0f/(float)nAverage; for (int i=0; i < 256; i++) { int ii = 255 - (i ^ 128); if(outputType==FFT_RMS) output[ii] = sqrtf(inAf*sumsq[ii]); else if(outputType==FFT_POWER) output[ii] = inAf*sumsq[ii]; else if(outputType==FFT_DBFS) output[ii] = 10.0f*log10f(inAf*sumsq[ii])-42.1442f; // Scaled to FS sine wave else output[ii] = 0.0f; } } outputflag = true; release(prevblock_i); // Release the 2 blocks that were block_i release(prevblock_q); // and block_q on last time through update() prevblock_i = block_i; // We will use these 2 blocks on next update() prevblock_q = block_q; // Just change pointers } #if 0 ============================================================== ============================================================== /* analyze_fft1024_F32.cpp Converted from Teensy I16 Audio Library * This version uses float F32 inputs. See comments at analyze_fft1024_F32.h * * Conversion parts copyright (c) Bob Larkin 2021 * * Audio Library for Teensy 3.X * Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com * * Development of this audio library was funded by PJRC.COM, LLC by sales of * Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop * open source software by purchasing Teensy or other PJRC products. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice, development funding notice, and this permission * notice shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include #include "analyze_fft1024_F32.h" // #include "utility/dspinst.h" // Move audio data from an audio_block_f32_t to the FFT instance buffer. static void copy_to_fft_buffer(void *destination, const void *source) { const float *src = (const float *)source; float *dst = (float *)destination; for (int i=0; i < AUDIO_BLOCK_SAMPLES; i++) { *dst++ = *src++; // real sample *dst++ = 0.0f; // 0 for Imag } } static void apply_window_to_fft_buffer(void *buffer, const void *window) { float *buf = (float *)buffer; // 0th entry is real (do window) 1th is imag const float *win = (float *)window; for (int i=0; i < 1024; i++) buf[2*i] *= *win++; } void AudioAnalyzeFFT1024_F32::update(void) { audio_block_f32_t *block; block = receiveReadOnly_f32(); if (!block) return; // What all does 7EM cover?? #if defined(__ARM_ARCH_7EM__) switch (state) { case 0: blocklist[0] = block; state = 1; break; case 1: blocklist[1] = block; state = 2; break; case 2: blocklist[2] = block; state = 3; break; case 3: blocklist[3] = block; state = 4; break; case 4: blocklist[4] = block; state = 5; break; case 5: blocklist[5] = block; state = 6; break; case 6: blocklist[6] = block; state = 7; break; case 7: blocklist[7] = block; copy_to_fft_buffer(fft_buffer+0x000, blocklist[0]->data); copy_to_fft_buffer(fft_buffer+0x100, blocklist[1]->data); copy_to_fft_buffer(fft_buffer+0x200, blocklist[2]->data); copy_to_fft_buffer(fft_buffer+0x300, blocklist[3]->data); copy_to_fft_buffer(fft_buffer+0x400, blocklist[4]->data); copy_to_fft_buffer(fft_buffer+0x500, blocklist[5]->data); copy_to_fft_buffer(fft_buffer+0x600, blocklist[6]->data); copy_to_fft_buffer(fft_buffer+0x700, blocklist[7]->data); if (pWin) apply_window_to_fft_buffer(fft_buffer, window); arm_cfft_radix4_f32(&fft_inst, fft_buffer); for (int i=0; i < 512; i++) { float magsq = fft_buffer[2*i]*fft_buffer[2*i] + fft_buffer[2*i+1]*fft_buffer[2*i+1]; if(outputType==FFT_RMS) output[i] = sqrtf(magsq); else if(outputType==FFT_POWER) output[i] = magsq; else if(outputType==FFT_DBFS) output[i] = 10.0f*log10f(magsq)-54.1854f; // Scaled to FS sine wave else output[i] = 0.0f; } outputflag = true; release(blocklist[0]); release(blocklist[1]); release(blocklist[2]); release(blocklist[3]); blocklist[0] = blocklist[4]; blocklist[1] = blocklist[5]; blocklist[2] = blocklist[6]; blocklist[3] = blocklist[7]; state = 4; break; } #else release(block); #endif } #endif