/* * radioVoiceClipper_F32.h * * 12 March 2023 (c) copyright Bob Larkin * But with With much credit to: * Chip Audette (OpenAudio) * and of course, to PJRC for the Teensy and Teensy Audio Library * * The development of this Voice Clipper was by Bob Larkin, W7PUA, based * entirely on ideas and suggestions from Dave Hershberger, W9GR. * Many thanks to Dave. Note that this clipper is is a "real variable" * version of the Single Sideband CESSB clipper. See the companion * radioCESSBtransmit_F32.h class which uses all the same principles. * * The input signal is a voice (or tones) that will, in general, have * been compressed in amplitude, keeping the maximum amplitude close to * 1.0 peak-to-center. For this class, clipping occurs for any input * greater than 1/gainIn where gainIn comes from the public function * setGains(). Normally gainIn has a value around 1.5 and so clipping occurs * for inputs above peak levels of 2/3=0.667. For this level of gaiIn, * there will be about 3 dB of increase in the average power of the voice * but still minimal perception of "over-processing." * * Internally the audio is clipped at the higher levels and the resulting * out-of-band distion is low pass filtered. Next, the overshoot that * occurs with the filter is removed by measuring the overshoot, low-pass * filtering the overshoot and subtracting it off. All this requires * care with the timing as all of the filtering steps involve delays. * * The compressor2 class in this F32 library is intended to precede this * class. * * NOTE: Do NOT follow this block with any non-linear phase filtering, * such as IIR. Minimize any linear-phase filtering such as FIR. * Such activities enhance the overshoots and defeat the purpose of clipping. * * An important note: This clipper is suitable for voice modes, such as * AM or NBFM. Do not use this clipper ahead of a single sideband * transmitter. That is what the CESSB class is for. * * The following reference has information on CESSB, in detail, as well * as on the use of clippers, similar to this one, in broadcast work: * Hershberger, D.L. (2014): Controlled Envelope Single Sideband. QEX * November/December 2014 pp3-13. * http://www.arrl.org/files/file/QEX_Next_Issue/2014/Nov-Dec_2014/Hershberger_QEX_11_14.pdf * * Status: Experimental * * Inputs: 0 is voice audio input * Outputs: 0 is clipped voice. * * Functions, available during operation: * void setSampleRate_Hz(float32_t fs_Hz) Allows dynamic sample rate change. * * struct levels* getLevels(int what) { * what = 0 returns a pointer to struct levels before data is ready * what = 1 returns a pointer to struct levels * * uint32_t levelDataCount() return countPower0 * * void setGains(float32_t gIn, float32_t gCompensate, float32_t gOut) * * Time: T3.6 For an update of a 128 sample block, estimated microseconds * T4.0 For an update of a 128 sample block, measured microseconds * These times are for a 48 ksps rate. * * NOTE: Do NOT follow this block with any non-linear phase filtering, * such as IIR. Minimize any linear-phase filtering such as FIR. * Such activities enhance the overshoots and defeat the purpose of clipping. */ #ifndef _radioVoiceClipper_f32_h #define _radioVoiceClipper_f32_h #include "Arduino.h" #include "AudioStream_F32.h" #include "arm_math.h" #include "mathDSP_F32.h" #define VC_SAMPLE_RATE_0 0 #define VC_SAMPLE_RATE_11_12 1 #define VC_SAMPLE_RATE_44_50 2 #define VC_SAMPLE_RATE_88_100 3 #ifndef M_PI #define M_PI 3.141592653589793f #endif #ifndef M_PI_2 #define M_PI_2 1.570796326794897f #endif #ifndef M_TWOPI #define M_TWOPI (M_PI * 2.0f) #endif // For the average power and peak voltage readings, global struct levelClipper { float32_t pwr0; float32_t peak0; float32_t pwr1; float32_t peak1; uint32_t countP; // Number of averaged samples for pwr0. }; class radioVoiceClipper_F32 : public AudioStream_F32 { //GUI: inputs:1, outputs:2 //this line used for automatic generation of GUI node //GUI: shortName:CESSBTransmit //this line used for automatic generation of GUI node public: radioVoiceClipper_F32(void) : AudioStream_F32(1, inputQueueArray_f32) { setSampleRate_Hz(AUDIO_SAMPLE_RATE); //uses default AUDIO_SAMPLE_RATE from AudioStream.h //setBlockLength(128); Always default 128 } radioVoiceClipper_F32(const AudioSettings_F32 &settings) : AudioStream_F32(1, inputQueueArray_f32) { setSampleRate_Hz(settings.sample_rate_Hz); //setBlockLength(128); Always default 128 } // Sample rate starts at default 44.1 ksps. That will work. Filters // are designed for 48 and 96 ksps, however. This is a *required* // function at setup(). void setSampleRate_Hz(const float _fs_Hz) { sample_rate_Hz = _fs_Hz; if(sample_rate_Hz>10900.0f && sample_rate_Hz<12600.0f) { // Design point is 12 ksps. No initial decimation. Interpolate // to 24 ksps for clipping and then decimate back to 12 at the end. sampleRate = VC_SAMPLE_RATE_11_12; nW = 128; nC = 256; countLevelMax = 10; // About 0.1 sec for 12 ksps inverseMaxCount = 1.0f/(float32_t)countLevelMax; arm_fir_init_f32(&firInstInterpolate1I, 23, (float32_t*)interpolateFilter1, &pStateInterpolate1I[0], nC); arm_fir_init_f32(&firInstClipperI, 123, (float32_t*)clipperOut, &pStateClipperI[0], nC); arm_fir_init_f32(&firInstOShootI, 123, (float32_t*)clipperOut, &pStateOShootI[0], nC); } else if(sample_rate_Hz>43900.0f && sample_rate_Hz<50100.0f) { // Design point is 48 ksps sampleRate = VC_SAMPLE_RATE_44_50; nW = 32; nC = 64; countLevelMax = 37; // About 0.1 sec for 48 ksps inverseMaxCount = 1.0f/(float32_t)countLevelMax; arm_fir_decimate_init_f32(&decimateInst, 65, 4, (float32_t*)decimateFilter48, &pStateDecimate[0], 128); arm_fir_init_f32(&firInstInterpolate1I, 23, (float32_t*)interpolateFilter1, &pStateInterpolate1I[0], nC); arm_fir_init_f32(&firInstClipperI, 123, (float32_t*)clipperOut, &pStateClipperI[0], nC); arm_fir_init_f32(&firInstOShootI, 123, (float32_t*)clipperOut, &pStateOShootI[0], nC); arm_fir_init_f32(&firInstInterpolate2I, 23, (float32_t*)interpolateFilter1, &pStateInterpolate2I[0], nC); } else if(sample_rate_Hz>88000.0f && sample_rate_Hz<100100.0f) { // GET THINGS WORKING AT VC_SAMPLE_RATE_44_50 FIRST AND THEN FIX UP 96 ksps // Design point is 96 ksps /* sampleRate = VC_SAMPLE_RATE_88_100; //<<<<<<<<<<<<<<<<<<<<<<FIXUP nW = 16; nC = 32; countLevelMax = 75; // About 0.1 sec for 96 ksps inverseMaxCount = 1.0f/(float32_t)countLevelMax; arm_fir_decimate_init_f32 (&decimateInst, 55, 4, (float32_t*)decimateFilter48, pStateDecimate, 128); arm_fir_init_f32(&firInstClipper, 199, basebandFilter, &StateFirClipperF32[0], 128); */ } else { // Unsupported sample rate sampleRate = VC_SAMPLE_RATE_0; nW = 1; nC = 1; } newLevelDataReady = false; } struct levelClipper* getLevels(int what) { if(what != 0) // 0 leaves a way to get pointer before data is ready { levelData.pwr0 = powerSum0/((float32_t)countPower0); levelData.peak0 = maxMag0; levelData.pwr1 = powerSum1/(float32_t)countPower1; levelData.peak1 = maxMag1; levelData.countP = countPower0; // Automatic reset for next set of readings powerSum0 = 0.0f; maxMag0 = -1.0f; powerSum1 = 0.0f; maxMag1 = -1.0f; countPower0 = 0; countPower1 = 0; } return &levelData; } uint32_t levelDataCount(void) { return countPower0; // Input count, out may be different } void setGains(float32_t gIn, float32_t gCompensate, float32_t gOut) { gainIn = gIn; gainCompensate = gCompensate; gainOut = gOut; } virtual void update(void); private: void sincos_Z_(float32_t ph); struct levelClipper levelData; audio_block_f32_t *inputQueueArray_f32[1]; uint32_t jjj = 0; // Used for diagnostic printing // Input/Output is at 12, 48 or 96 ksps. // Clipping and overshoot processing is at 24 ksps. // Next line is to indicate that setSampleRateHz() has not executed int sampleRate = VC_SAMPLE_RATE_0; float32_t sample_rate_Hz = AUDIO_SAMPLE_RATE; // 44.1 ksps int16_t nW = 32; // 128, 32 or 16 int16_t nC = 64; // 256, 64 or 32 uint16_t block_length = 128; float32_t pStateDecimate[128 + 65 - 1]; // Goes with CMSIS decimate function arm_fir_decimate_instance_f32 decimateInst; // For 12 ksps case, 24 kHz clipper uses 256 points float32_t pStateInterpolate1I[256 + 23 - 1]; // For interpolate 12 to 24 ksps arm_fir_instance_f32 firInstInterpolate1I; float32_t pStateClipperI[256 + 123 - 1]; // Goes with Clipper filter arm_fir_instance_f32 firInstClipperI; // at 24 ksps float32_t pStateOShootI[256+123-1]; arm_fir_instance_f32 firInstOShootI; float32_t pStateInterpolate2I[256 + 23 - 1]; // For interpolate 12 to 24 ksps arm_fir_instance_f32 firInstInterpolate2I; float32_t gainIn = 1.0f; float32_t gainCompensate = 1.4f; float32_t gainOut = 1.0f; // Does not change Clipping, here for convenience to set out level // A tiny delay to allow negative time for the previous path float32_t osEnv[4]; uint16_t indexOsEnv = 4; // 0 to 3 by using a 2-bit mask // We need a delay for overshoot remove to account for the FIR // filter in the correction path. Some where around 128 taps works // but if we make the delay exactly 2^6=64 the delay line is simple // resulting in a FIR size of 2*64+1=129 taps. float32_t osDelayI[64]; uint16_t indexOsDelay = 64; // RMS and Peak variable for monitoring levels and changes to the // Peak to RMS ratio. These are temporary storage. Data is // transferred by global levelData struct at the top of this file. float32_t powerSum0 = 0.0f; float32_t maxMag0 = -1.0f; float32_t powerSum1 = 0.0f; float32_t maxMag1 = -1.0f; uint32_t countPower0 = 0; uint32_t countPower1 = 0; bool newLevelDataReady = false; int countLevel = 0; int countLevelMax = 37; // About 0.1 sec for 48 ksps float32_t inverseMaxCount = 1.0f/(float32_t)countLevelMax; /* Input filter for decimate by 4: * FIR filter designed with http://t-filter.appspot.com * Sampling frequency: 48000 Hz * 0 Hz - 3000 Hz ripple = 0.075 dB * 6000 Hz - 24000 Hz atten = -95.93 dB */ const float32_t decimateFilter48[65] = { 0.00004685f, 0.00016629f, 0.00038974f, 0.00073279f, 0.00113663f, 0.00148721f, 0.00159057f, 0.00125129f, 0.00032821f,-0.00114283f,-0.00289782f,-0.00441933f, -0.00505118f,-0.00418143f,-0.00151748f, 0.00268876f, 0.00751487f, 0.01147689f, 0.01286243f, 0.01027735f, 0.00323528f,-0.00737003f,-0.01913035f,-0.02842381f, -0.03117447f,-0.02390063f,-0.00480378f, 0.02544011f, 0.06344286f, 0.10357132f, 0.13904464f, 0.16342506f, 0.17210799f, 0.16342506f, 0.13904464f, 0.10357132f, 0.06344286f, 0.02544011f,-0.00480378f,-0.02390063f,-0.03117447f,-0.02842381f, -0.01913035f,-0.00737003f, 0.00323528f, 0.01027735f, 0.01286243f, 0.01147689f, 0.00751487f, 0.00268876f,-0.00151748f,-0.00418143f,-0.00505118f,-0.00441933f, -0.00289782f,-0.00114283f, 0.00032821f, 0.00125129f, 0.00159057f, 0.00148721f, 0.00113663f, 0.00073279f, 0.00038974f, 0.00016629f, 0.00004685}; /* Filter for outputs of clipper * Use also overshoot corrector, but might be able to use less terms. * FIR filter designed with http://t-filter.appspot.com * Sample frequency: 24000 Hz * 0 Hz - 2800 Hz ripple = 0.14 dB * 3200 Hz - 12000 Hz atten = 40.51 dB */ const float32_t clipperOut[123] = { -0.003947255f, 0.001759588f, 0.002221444f, 0.002407244f, 0.001833343f, 0.000524622f, -0.000946260f,-0.001768428f,-0.001395297f, 0.000055916f, 0.001779024f, 0.002694998f, 0.002099736f, 0.000157764f,-0.002092190f,-0.003282801f,-0.002542927f,-0.000116969f, 0.002694319f, 0.004153363f, 0.003197589f, 0.000143560f,-0.003346600f,-0.005148200f, -0.003947437f,-0.000152425f, 0.004166345f, 0.006378882f, 0.004871469f, 0.000164557f, -0.005173898f,-0.007896395f,-0.006014470f,-0.000173552f, 0.006447615f, 0.009828080f, 0.007480359f, 0.000184482f,-0.008116957f,-0.012379161f,-0.009436712f,-0.000194737f, 0.010412610f, 0.015941971f, 0.012213107f, 0.000200845f,-0.013823966f,-0.021360759f, -0.016552097f,-0.000205707f, 0.019544260f, 0.030836344f, 0.024523278f, 0.000211298f, -0.031509151f,-0.052450055f,-0.044811840f,-0.000214078f, 0.074661107f, 0.158953216f, 0.225159581f, 0.250214862f, 0.225159581f, 0.158953216f, 0.074661107f,-0.000214078f, -0.044811840f,-0.052450055f,-0.031509151f, 0.000211298f, 0.024523278f, 0.030836344f, 0.019544260f,-0.000205707f,-0.016552097f,-0.021360759f,-0.013823966f, 0.000200845f, 0.012213107f, 0.015941971f, 0.010412610f,-0.000194737f,-0.009436712f,-0.012379161f, -0.008116957f, 0.000184482f, 0.007480359f, 0.009828080f, 0.006447615f,-0.000173552f, -0.006014470f,-0.007896395f,-0.005173898f, 0.000164557f, 0.004871469f, 0.006378882f, 0.004166345f,-0.000152425f,-0.003947437f,-0.005148200f,-0.003346600f, 0.000143560f, 0.003197589f, 0.004153363f, 0.002694319f,-0.000116969f,-0.002542927f,-0.003282801f, -0.002092190f, 0.000157764f, 0.002099736f, 0.002694998f, 0.001779024f, 0.000055916f, -0.001395297f,-0.001768428f,-0.000946260f, 0.000524622f, 0.001833343f, 0.002407244f, 0.002221444f, 0.001759588f,-0.003947255f}; /* FIR filter designed with http://t-filter.appspot.com * Sampling frequency: 24000 sps * 0 Hz - 3000 Hz gain = 2 ripple = 0.11 dB * 6000 Hz - 12000 Hz atten = -62.4 dB * (At Sampling Frequency=48ksps, double all frequency values) */ const float32_t interpolateFilter1[23] = { -0.00413402f,-0.01306124f,-0.01106321f, 0.01383359f, 0.04386756f, 0.02731837f, -0.05470066f,-0.12407408f,-0.04389386f, 0.23355907f, 0.56707488f, 0.71763165f, 0.56707488f, 0.23355907f,-0.04389386f,-0.12407408f,-0.05470066f, 0.02731837f, 0.04386756f, 0.01383359f,-0.01106321f,-0.01306124f,-0.00413402}; }; // end Class #endif