/* * radioCESSB_Z_transmit_F32.h * * This is a modification of the CESSB algorithm to output SSB at zero carrier * instead of 1350 Hz as the Weaver modulation produces. This allows * transmission with zero-IF radios where the finite carrier balance * of the hardware mixers produces the mid-band tone.The basic change * is to use the phasing method in place of the Weaver method. However, * all filters needed to be changed and are at the bottom of this file. * The 12 and 24 ksps sample rates of the radioCESSB_transmit_F32 class * are continued here as they were more than adequate for the Weaver method. * The sine/cosine oscillator is not needed here and has been removed. * * * 18 Jan 2023 (c) copyright Bob Larkin * But with With much credit to: * Chip Audette (OpenAudio) * and of course, to PJRC for the Teensy and Teensy Audio Library * * The development of the Controlled Envelope Single Side Band (CESSB) * was done by Dave Hershberger, W9GR. Many thanks to Dave. * The following description is mostly taken * from Frank, DD4WH and is on line at the GNU Radio site, ref: * https://github-wiki-see.page/m/df8oe/UHSDR/wiki/Controlled-Envelope-Single-Sideband-CESSB * and has been revised by Bob L. to reflect the phasing method change. * * Controlled Envelope Single Sideband is an invention by Dave Hershberger * W9GR with the aim to "allow your rig to output more average power while * keeping peak envelope power PEP the same". The increase in perceived * loudness can be up to 4dB without any audible increase in distortion * and without making you sound "processed" (Hershberger 2014, 2016b). * * The principle to achieve this is relatively simple. The process * involves only audio baseband processing which can be done digitally in * software without the need for modifications in the hardware or messing * with the RF output of your rig. * * Controlled Envelope Single Sideband can be produced using three * processing blocks making up a complete CESSB system: * 1. An SSB modulator. This is implemented as the phasing method to allow * minimum (12 kHz) decimated sample rate with the output of I & Q * signals (a complex SSB signal). * 2. A baseband envelope clipper. This takes the modulus of the I & Q * signals (also called the magnitude), which is sqrt(I * I + Q * Q) * and divides the I & Q signals by the modulus, IF the signal is * larger than 1.0. If not, the signal remains untouched. After * clipping, the signal is lowpass filtered with a linear phase FIR * low pass filter with a stopband frequency of 3.0kHz * 3. An overshoot controller . This does something similar as the * envelope clipper: Again, the modulus is calculated (but now on * the basis of the current and two preceding and two subsequent * samples). If the signals modulus is larger than 1 (clipping), * the signals I and Q are divided by the maximum of 1 or of * (1.9 * signal). That means the clipping is overcompensated by 1.9 * [the phasing method seems to perform best with 1.4*signal] * which leads to a much better suppression of the overshoots from * the first two stages. Finally, the resulting signal is again * lowpass-filtered with a linear phase FIR filter with stopband * frequency of 3.0khz * * It is important that the sample rate is high enough so that the higher * frequency components of the output of the modulator, clipper and * overshoot controller do not alias back into the desired signal. Also * all the filters should be linear phase filters (FIR, not IIR). * * This CESSB system can reduce the overshoot of the SSB modulator from * 61% to 1.3%, meaning about 2.5 times higher perceived SSB output power * (Hershberger 2014). * * References: * 1-Hershberger, D.L. (2014): Controlled Envelope Single Sideband. QEX * November/December 2014 pp3-13. * http://www.arrl.org/files/file/QEX_Next_Issue/2014/Nov-Dec_2014/Hershberger_QEX_11_14.pdf * 2-Hershberger, D.L. (2016a): External Processing for Controlled * Envelope Single Sideband. - QEX January/February 2016 pp9-12. * http://www.arrl.org/files/file/QEX_Next_Issue/2016/January_February_2016/Hershberger_QEX_1_16.pdf * 3-Hershberger, D.L. (2016b): Understanding Controlled Envelope Single * Sideband. - QST February 2016 pp30-36. * 4-Forum discussion on CESSB on the Flex-Radio forum, * https://community.flexradio.com/discussion/6432965/cessb-questions * * Status: Experimental * * Inputs: 0 is voice audio input * Outputs: 0 is I 1 is Q * * Functions, available during operation: * void frequency(float32_t fr) Sets LO frequency Hz * * void setSampleRate_Hz(float32_t fs_Hz) Allows dynamic sample rate change for this function * * struct levels* getLevels(int what) { * what = 0 returns a pointer to struct levels before data is ready * what = 1 returns a pointer to struct levels * * uint32_t levelDataCount() return countPower0 * * void setGains(float32_t gIn, float32_t gCompensate, float32_t gOut) * * Time: T3.6 For an update of a 128 sample block, estimated 700 microseconds * T4.0 For an update of a 128 sample block, measured 211 microseconds * These times are for a 48 ksps rate. * * NOTE: Do NOT follow this block with any non-linear phase filtering, * such as IIR. Minimize any linear-phase filtering such as FIR. * Such activities enhance the overshoots and defeat the purpose of CESSB. */ // Rev 14Oct24 Added on/off via cessbProcessing. Tnx KF5N. #ifndef _radioCESSB_Z_transmit_f32_h #define _radioCESSB_Z_transmit_f32_h #include "Arduino.h" #include "AudioStream_F32.h" #include "arm_math.h" #include "mathDSP_F32.h" #define SAMPLE_RATE_0 0 #define SAMPLE_RATE_44_50 1 #define SAMPLE_RATE_88_100 2 #ifndef M_PI #define M_PI 3.141592653589793f #endif #ifndef M_PI_2 #define M_PI_2 1.570796326794897f #endif #ifndef M_TWOPI #define M_TWOPI (M_PI * 2.0f) #endif // For the average power and peak voltage readings, global struct levelsZ { float32_t pwr0; float32_t peak0; float32_t pwr1; float32_t peak1; uint32_t countP; // Number of averaged samples for pwr0. }; class radioCESSB_Z_transmit_F32 : public AudioStream_F32 { //GUI: inputs:1, outputs:2 //this line used for automatic generation of GUI node //GUI: shortName:CESSBTransmit //this line used for automatic generation of GUI node public: radioCESSB_Z_transmit_F32(void) : AudioStream_F32(1, inputQueueArray_f32) { setSampleRate_Hz(AUDIO_SAMPLE_RATE); //uses default AUDIO_SAMPLE_RATE from AudioStream.h //setBlockLength(128); Always default 128 } radioCESSB_Z_transmit_F32(const AudioSettings_F32 &settings) : AudioStream_F32(1, inputQueueArray_f32) { setSampleRate_Hz(settings.sample_rate_Hz); //setBlockLength(128); Always default 128 } // A "setter" and "getter" methods. If cessbProcessing==false, CESSB processing is bypassed. // This is intended for digital modes. Greg KF5N August 16 2024 void setProcessing(bool cessbActive) { cessbProcessing = cessbActive; } bool getProcessing(void) { return cessbProcessing; } // Sample rate starts at default 44.1 ksps. That will work. Filters // are designed for 48 and 96 ksps, however. This is a *required* // function at setup(). void setSampleRate_Hz(const float fs_Hz) { sample_rate_Hz = fs_Hz; if(sample_rate_Hz>44000.0f && sample_rate_Hz<50100.0f) { // Design point is 48 ksps sampleRate = SAMPLE_RATE_44_50; nW = 32; nC = 64; countLevelMax = 37; // About 0.1 sec for 48 ksps inverseMaxCount = 1.0f/(float32_t)countLevelMax; arm_fir_decimate_init_f32(&decimateInst, 65, 4, (float32_t*)decimateFilter48, &pStateDecimate[0], 128); arm_fir_init_f32(&firInstHilbertI, 201, (float32_t*)hilbert201_130Hz12000Hz, &pStateHilbertI[0], nW); arm_fir_init_f32(&firInstInterpolate1I, 23, (float32_t*)interpolateFilter1, &pStateInterpolate1I[0], nC); arm_fir_init_f32(&firInstInterpolate1Q, 23, (float32_t*)interpolateFilter1, &pStateInterpolate1Q[0], nC); arm_fir_init_f32(&firInstClipperI, 123, (float32_t*)clipperOut, &pStateClipperI[0], nC); arm_fir_init_f32(&firInstClipperQ, 123, (float32_t*)clipperOut, &pStateClipperQ[0], nC); arm_fir_init_f32(&firInstOShootI, 123, (float32_t*)clipperOut, &pStateOShootI[0], nC); arm_fir_init_f32(&firInstOShootQ, 123, (float32_t*)clipperOut, &pStateOShootQ[0], nC); arm_fir_init_f32(&firInstInterpolate2I, 23, (float32_t*)interpolateFilter1, &pStateInterpolate2I[0], nC); arm_fir_init_f32(&firInstInterpolate2Q, 23, (float32_t*)interpolateFilter1, &pStateInterpolate2Q[0], nC); } else if(sample_rate_Hz>88000.0f && sample_rate_Hz<100100.0f) { // GET THINGS WORKING AT SAMPLE_RATE_44_50 FIRST AND THEN FIX UP 96 ksps // Design point is 96 ksps /* sampleRate = SAMPLE_RATE_88_100; //<<<<<<<<<<<<<<<<<<<<<<FIXUP nW = 16; nC = 32; countLevelMax = 75; // About 0.1 sec for 96 ksps inverseMaxCount = 1.0f/(float32_t)countLevelMax; arm_fir_decimate_init_f32 (&decimateInst, 55, 4, (float32_t*)decimateFilter48, pStateDecimate, 128); arm_fir_init_f32(&firInstClipper, 199, basebandFilter, &StateFirClipperF32[0], 128); */ } else { // Unsupported sample rate sampleRate = SAMPLE_RATE_0; nW = 1; nC = 1; } newLevelDataReady = false; } struct levelsZ* getLevels(int what) { if(what != 0) // 0 leaves a way to get pointer before data is ready { levelData.pwr0 = powerSum0/((float32_t)countPower0); levelData.peak0 = maxMag0; levelData.pwr1 = powerSum1/(float32_t)countPower1; levelData.peak1 = maxMag1; levelData.countP = countPower0; // Automatic reset for next set of readings powerSum0 = 0.0f; maxMag0 = -1.0f; powerSum1 = 0.0f; maxMag1 = -1.0f; countPower0 = 0; countPower1 = 0; } return &levelData; } uint32_t levelDataCount(void) { return countPower0; // Input count, out may be different } void setGains(float32_t gIn, float32_t gCompensate, float32_t gOut) { gainIn = gIn; gainCompensate = gCompensate; gainOut = gOut; } // Small corrections at the output end of this object can patch up hardware flaws. // _gI should be close to 1.0, _gXIQ and _gXQI should be close to 0.0. void setIQCorrections(bool _useCor, float32_t _gI, float32_t _gXIQ, float32_t _gXQI) { useIQCorrection = _useCor; gainI = _gI; crossIQ = _gXIQ; crossQI = _gXQI; } // The LSB/USB selection depends on the processing of the IQ signals // inside this class. It may get flipped with later processing. void setSideband(bool _sbReverse) { sidebandReverse = _sbReverse; } virtual void update(void); private: void sincos_Z_(float32_t ph); struct levelsZ levelData; audio_block_f32_t *inputQueueArray_f32[1]; uint32_t jjj = 0; // Used for diagnostic printing bool cessbProcessing = true; // If false, CESSB processing is bypassed. // Greg KF5N August 16 2024 // Input/Output is at 48 or 96 ksps. Hilbert generation is at 12 ksps. // Clipping and overshoot processing is at 24 ksps. // Next line is to indicate that setSampleRateHz() has not executed int sampleRate = SAMPLE_RATE_0; float32_t sample_rate_Hz = AUDIO_SAMPLE_RATE; // 44.1 ksps int16_t nW = 32; // 32 or 16 int16_t nC = 64; // 64 or 32 uint16_t block_length = 128; bool sidebandReverse = false; bool useIQCorrection = false; float32_t gainI = 1.0f; float32_t crossIQ = 0.0f; float32_t crossQI = 0.0f; float32_t pStateDecimate[128 + 65 - 1]; // Goes with CMSIS decimate function arm_fir_decimate_instance_f32 decimateInst; float32_t pStateHilbertI[32 + 201 - 1]; arm_fir_instance_f32 firInstHilbertI; float32_t pStateInterpolate1I[64 + 23 - 1]; // For interpolate 12 to 24 ksps arm_fir_instance_f32 firInstInterpolate1I; float32_t pStateInterpolate1Q[64 + 23 - 1]; arm_fir_instance_f32 firInstInterpolate1Q; float32_t pStateClipperI[64 + 123 - 1]; // Goes with Clipper filter arm_fir_instance_f32 firInstClipperI; // at 24 ksps float32_t pStateClipperQ[64 + 123 - 1]; arm_fir_instance_f32 firInstClipperQ; float32_t pStateOShootI[64+123-1]; arm_fir_instance_f32 firInstOShootI; float32_t pStateOShootQ[64+123-1]; arm_fir_instance_f32 firInstOShootQ; float32_t pStateInterpolate2I[128 + 23 - 1]; // For interpolate 12 to 24 ksps arm_fir_instance_f32 firInstInterpolate2I; float32_t pStateInterpolate2Q[128 + 23 - 1]; arm_fir_instance_f32 firInstInterpolate2Q; // float32_t sn, cs; float32_t gainIn = 1.0f; float32_t gainCompensate = 1.4f; float32_t gainOut = 1.0f; // Does not change CESSB, here for convenience to set transmit power float32_t delayHilbertQ[128]; uint16_t indexDelayHilbertQ = 0; // A tiny delay to allow negative time for the previous path float32_t osEnv[4]; uint16_t indexOsEnv = 4; // 0 to 3 by using a 2-bit mask // We need a delay for overshoot remove to account for the FIR // filter in the correction path. Some where around 128 taps works // but if we make the delay exactly 2^6=64 the delay line is simple // resulting in a FIR size of 2*64+1=129 taps. float32_t osDelayI[64]; float32_t osDelayQ[64]; uint16_t indexOsDelay = 64; // RMS and Peak variable for monitoring levels and changes to the // Peak to RMS ratio. These are temporary storage. Data is // transferred by global levelData struct at the top of this file. float32_t powerSum0 = 0.0f; float32_t maxMag0 = -1.0f; float32_t powerSum1 = 0.0f; float32_t maxMag1 = -1.0f; uint32_t countPower0 = 0; uint32_t countPower1 = 0; bool newLevelDataReady = false; int countLevel = 0; int countLevelMax = 37; // About 0.1 sec for 48 ksps float32_t inverseMaxCount = 1.0f/(float32_t)countLevelMax; /* Input filter for decimate by 4: * FIR filter designed with http://t-filter.appspot.com * Sampling frequency: 48000 Hz * 0 Hz - 3000 Hz ripple = 0.075 dB * 6000 Hz - 24000 Hz atten = -95.93 dB */ const float32_t decimateFilter48[65] = { 0.00004685f, 0.00016629f, 0.00038974f, 0.00073279f, 0.00113663f, 0.00148721f, 0.00159057f, 0.00125129f, 0.00032821f,-0.00114283f,-0.00289782f,-0.00441933f, -0.00505118f,-0.00418143f,-0.00151748f, 0.00268876f, 0.00751487f, 0.01147689f, 0.01286243f, 0.01027735f, 0.00323528f,-0.00737003f,-0.01913035f,-0.02842381f, -0.03117447f,-0.02390063f,-0.00480378f, 0.02544011f, 0.06344286f, 0.10357132f, 0.13904464f, 0.16342506f, 0.17210799f, 0.16342506f, 0.13904464f, 0.10357132f, 0.06344286f, 0.02544011f,-0.00480378f,-0.02390063f,-0.03117447f,-0.02842381f, -0.01913035f,-0.00737003f, 0.00323528f, 0.01027735f, 0.01286243f, 0.01147689f, 0.00751487f, 0.00268876f,-0.00151748f,-0.00418143f,-0.00505118f,-0.00441933f, -0.00289782f,-0.00114283f, 0.00032821f, 0.00125129f, 0.00159057f, 0.00148721f, 0.00113663f, 0.00073279f, 0.00038974f, 0.00016629f, 0.00004685}; /* 90 degree Hilbert filter * FIR filter designed Iowa Hills suite - Thank you. * Sampling frequency: 12000 Hz * 130 Hz - 5870 Hz ripple = 0.0036 dB */ const float32_t hilbert201_130Hz12000Hz[201] = { 0.000000000f, 0.000081360f, 0.000000000f, 0.000114966f, 0.000000000f, 0.000155734f, 0.000000000f, 0.000204564f, 0.000000000f, 0.000262417f, 0.000000000f, 0.000330320f, 0.000000000f, 0.000409359f, 0.000000000f, 0.000500689f, 0.000000000f, 0.000605532f, 0.000000000f, 0.000725179f, 0.000000000f, 0.000860994f, 0.000000000f, 0.001014419f, 0.000000000f, 0.001186978f, 0.000000000f, 0.001380282f, 0.000000000f, 0.001596041f, 0.000000000f, 0.001836068f, 0.000000000f, 0.002102298f, 0.000000000f, 0.002396800f, 0.000000000f, 0.002721798f, 0.000000000f, 0.003079696f, 0.000000000f, 0.003473107f, 0.000000000f, 0.003904895f, 0.000000000f, 0.004378221f, 0.000000000f, 0.004896603f, 0.000000000f, 0.005463995f, 0.000000000f, 0.006084876f, 0.000000000f, 0.006764381f, 0.000000000f, 0.007508449f, 0.000000000f, 0.008324026f, 0.000000000f, 0.009219325f, 0.000000000f, 0.010204165f, 0.000000000f, 0.011290428f, 0.000000000f, 0.012492662f, 0.000000000f, 0.013828919f, 0.000000000f, 0.015321902f, 0.000000000f, 0.017000603f, 0.000000000f, 0.018902655f, 0.000000000f, 0.021077827f, 0.000000000f, 0.023593325f, 0.000000000f, 0.026542141f, 0.000000000f, 0.030056654f, 0.000000000f, 0.034331851f, 0.000000000f, 0.039667098f, 0.000000000f, 0.046546491f, 0.000000000f, 0.055806835f, 0.000000000f, 0.069029606f, 0.000000000f, 0.089604827f, 0.000000000f, 0.126348239f, 0.000000000f, 0.211587134f, 0.000000000f, 0.636276105f, 0.000000000f,-0.636276105f, 0.000000000f,-0.211587134f, 0.000000000f,-0.126348239f, 0.000000000f,-0.089604827f, 0.000000000f,-0.069029606f, 0.000000000f,-0.055806835f, 0.000000000f,-0.046546491f, 0.000000000f,-0.039667098f, 0.000000000f,-0.034331851f, 0.000000000f,-0.030056654f, 0.000000000f,-0.026542141f, 0.000000000f,-0.023593325f, 0.000000000f,-0.021077827f, 0.000000000f,-0.018902655f, 0.000000000f,-0.017000603f, 0.000000000f,-0.015321902f, 0.000000000f,-0.013828919f, 0.000000000f,-0.012492662f, 0.000000000f,-0.011290428f, 0.000000000f,-0.010204165f, 0.000000000f,-0.009219325f, 0.000000000f,-0.008324026f, 0.000000000f,-0.007508449f, 0.000000000f,-0.006764381f, 0.000000000f,-0.006084876f, 0.000000000f,-0.005463995f, 0.000000000f,-0.004896603f, 0.000000000f,-0.004378221f, 0.000000000f,-0.003904895f, 0.000000000f,-0.003473107f, 0.000000000f,-0.003079696f, 0.000000000f,-0.002721798f, 0.000000000f,-0.002396800f, 0.000000000f,-0.002102298f, 0.000000000f,-0.001836068f, 0.000000000f,-0.001596041f, 0.000000000f,-0.001380282f, 0.000000000f,-0.001186978f, 0.000000000f,-0.001014419f, 0.000000000f,-0.000860994f, 0.000000000f,-0.000725179f, 0.000000000f,-0.000605532f, 0.000000000f,-0.000500689f, 0.000000000f,-0.000409359f, 0.000000000f,-0.000330320f, 0.000000000f,-0.000262417f, 0.000000000f,-0.000204564f, 0.000000000f,-0.000155734f, 0.000000000f,-0.000114966f, 0.000000000f,-0.000081360f, 0.000000000}; /* Filter for outputs of clipper * Use also overshoot corrector, but might be able to use less terms. * FIR filter designed with http://t-filter.appspot.com * Sample frequency: 24000 Hz * 0 Hz - 2800 Hz ripple = 0.14 dB * 3200 Hz - 12000 Hz atten = 40.51 dB */ const float32_t clipperOut[123] = { -0.003947255f, 0.001759588f, 0.002221444f, 0.002407244f, 0.001833343f, 0.000524622f, -0.000946260f,-0.001768428f,-0.001395297f, 0.000055916f, 0.001779024f, 0.002694998f, 0.002099736f, 0.000157764f,-0.002092190f,-0.003282801f,-0.002542927f,-0.000116969f, 0.002694319f, 0.004153363f, 0.003197589f, 0.000143560f,-0.003346600f,-0.005148200f, -0.003947437f,-0.000152425f, 0.004166345f, 0.006378882f, 0.004871469f, 0.000164557f, -0.005173898f,-0.007896395f,-0.006014470f,-0.000173552f, 0.006447615f, 0.009828080f, 0.007480359f, 0.000184482f,-0.008116957f,-0.012379161f,-0.009436712f,-0.000194737f, 0.010412610f, 0.015941971f, 0.012213107f, 0.000200845f,-0.013823966f,-0.021360759f, -0.016552097f,-0.000205707f, 0.019544260f, 0.030836344f, 0.024523278f, 0.000211298f, -0.031509151f,-0.052450055f,-0.044811840f,-0.000214078f, 0.074661107f, 0.158953216f, 0.225159581f, 0.250214862f, 0.225159581f, 0.158953216f, 0.074661107f,-0.000214078f, -0.044811840f,-0.052450055f,-0.031509151f, 0.000211298f, 0.024523278f, 0.030836344f, 0.019544260f,-0.000205707f,-0.016552097f,-0.021360759f,-0.013823966f, 0.000200845f, 0.012213107f, 0.015941971f, 0.010412610f,-0.000194737f,-0.009436712f,-0.012379161f, -0.008116957f, 0.000184482f, 0.007480359f, 0.009828080f, 0.006447615f,-0.000173552f, -0.006014470f,-0.007896395f,-0.005173898f, 0.000164557f, 0.004871469f, 0.006378882f, 0.004166345f,-0.000152425f,-0.003947437f,-0.005148200f,-0.003346600f, 0.000143560f, 0.003197589f, 0.004153363f, 0.002694319f,-0.000116969f,-0.002542927f,-0.003282801f, -0.002092190f, 0.000157764f, 0.002099736f, 0.002694998f, 0.001779024f, 0.000055916f, -0.001395297f,-0.001768428f,-0.000946260f, 0.000524622f, 0.001833343f, 0.002407244f, 0.002221444f, 0.001759588f,-0.003947255f}; /* FIR filter designed with http://t-filter.appspot.com * Sampling frequency: 24000 sps * 0 Hz - 3000 Hz gain = 2 ripple = 0.11 dB * 6000 Hz - 12000 Hz atten = -62.4 dB * (At Sampling Frequency=48ksps, double all frequency values) */ const float32_t interpolateFilter1[23] = { -0.00413402f,-0.01306124f,-0.01106321f, 0.01383359f, 0.04386756f, 0.02731837f, -0.05470066f,-0.12407408f,-0.04389386f, 0.23355907f, 0.56707488f, 0.71763165f, 0.56707488f, 0.23355907f,-0.04389386f,-0.12407408f,-0.05470066f, 0.02731837f, 0.04386756f, 0.01383359f,-0.01106321f,-0.01306124f,-0.00413402}; }; // end Class #endif