/* AudioFilterEqualizer_F32.cpp * * Bob Larkin, W7PUA 8 May 2020 * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "AudioFilterEqualizer_F32.h" void AudioFilterEqualizer_F32::update(void) { audio_block_f32_t *block, *block_new; #if TEST_TIME_EQ if (iitt++ >1000000) iitt = -10; uint32_t t1, t2; t1 = tElapse; #endif block = AudioStream_F32::receiveReadOnly_f32(); if (!block) return; // If there's no coefficient table, give up. if (cf32f == NULL) { AudioStream_F32::release(block); return; } block_new = AudioStream_F32::allocate_f32(); // get a block for the FIR output if (block_new) { //apply the FIR arm_fir_f32(&fir_inst, block->data, block_new->data, block->length); AudioStream_F32::transmit(block_new); // send the FIR output AudioStream_F32::release(block_new); } AudioStream_F32::release(block); #if TEST_TIME_EQ t2 = tElapse; if(iitt++ < 0) {Serial.print("At AnalyzePhase end, microseconds = "); Serial.println (t2 - t1); } t1 = tElapse; #endif } /* equalizerNew() calculates the Equalizer FIR filter coefficients. Works from: * uint16_t equalizerNew(uint16_t _nBands, float32_t *feq, float32_t *adb, uint16_t _nFIR, float32_t *_cf32f, float32_t kdb) * nBands Number of equalizer bands * feq Pointer to array feq[] of nBands breakpoint frequencies, fractions of sample rate, Hz * adb Pointer to array aeq[] of nBands levels, in dB, for the feq[] defined frequency bands * nFIR The number of FIR coefficients (taps) used in the equalzer * cf32f Pointer to an array of float to hold FIR coefficients * kdb A parameter that trades off sidelobe levels for sharpness of band transition. * kdb=30 sharp cutoff, poor sidelobes * kdb=60 slow cutoff, low sidelobes * * The arrays, feq[], aeq[] and cf32f[] are supplied by the calling .INO * * Returns: 0 if successful, or an error code if not. * Errors: 1 = Too many bands, 50 max * 2 = sidelobe level out of range, must be > 0 * 3 = nFIR out of range * * Note - This function runs at setup time, and there is no need to fret about * processor speed. Likewise, local arrays are created on the stack and are * available for other use when this function closes. */ uint16_t AudioFilterEqualizer_F32::equalizerNew(uint16_t _nBands, float32_t *feq, float32_t *adb, uint16_t _nFIR, float32_t *_cf32f, float32_t kdb) { uint16_t i, j; uint16_t nHalfFIR; float32_t beta, kbes; float32_t q, xj2, scaleXj2, WindowWt; float32_t fNorm[50]; // Normalized to the sampling frequency float32_t aVolts[50]; // Convert from dB to "quasi-Volts" mathDSP_F32 mathEqualizer; // For Bessel function // Make private copies cf32f = _cf32f; nFIR = _nFIR; nBands = _nBands; // Check range of nFIR if (nFIR<5 || nFIR>EQUALIZER_MAX_COEFFS) return ERR_EQ_NFIR; // The number of FIR coefficients needs to be odd if (2*(nFIR/2) == nFIR) nFIR -= 1; // We just won't use the last element of the array nHalfFIR = (nFIR - 1)/2; // If nFIR=199, nHalfFIR=99 for (int kk = 0; kk<nFIR; kk++) // To be sure, zero the coefficients cf32f[kk] = 0.0f; // Convert dB to Voltage ratios, frequencies to fractions of sampling freq if(nBands <2 || nBands>50) return ERR_EQ_BANDS; for (i=0; i<nBands; i++) { aVolts[i]=powf(10.0, (0.05*adb[i])); fNorm[i]=feq[i]/sample_rate_Hz; } /* Find FIR coefficients, the Fourier transform of the frequency * response. This is done by dividing the response into a sequence * of nBands rectangular frequency blocks, each of a different level. * We can precalculate the Fourier transform for each rectangular band. * The linearity of the Fourier transform allows us to sum the transforms * of the individual blocks to get pre-windowed coefficients. As follows * * Numbering example for nFIR==199: * Subscript 0 to 98 is 99 taps; 100 to 198 is 99 taps; 99+1+99=199 taps * The center coef ( for nFIR=199 taps, nHalfFIR=99 ) is a * special case that comes from sin(0)/0 and treated first: */ cf32f[nHalfFIR] = 2.0f*(aVolts[0]*fNorm[0]); // Coefficient "99" for(i=1; i<nBands; i++) { cf32f[nHalfFIR] += 2.0f*aVolts[i]*(fNorm[i]-fNorm[i-1]); } for (j=1; j<=nHalfFIR; j++) { // Coefficients "100 to 198" q = MF_PI*(float32_t)j; // First, deal with the zero frequency end band that is "low-pass." cf32f[j+nHalfFIR] = aVolts[0]*sinf(fNorm[0]*2.0*q)/q; // and then the rest of the bands that have low and high frequencies for(i=1; i<nBands; i++) cf32f[j+nHalfFIR] += aVolts[i]*( (sinf(fNorm[i]*2.0*q)/q) - (sinf(fNorm[i-1]*2.0*q)/q) ); } /* At this point, the cf32f[] coefficients are simply truncated sin(x)/x shapes, creating * very high sidelobe responses. To reduce the sidelobes, a windowing function is applied. * This has the side affect of increasing the rate of cutoff for sharp frequency changes. * The only windowing function available here is that of James Kaiser. This has a number * of desirable features. The tradeoff of sidelobe level versus cutoff rate is variable. * We specify it in terms of kdb, the highest sidelobe, in dB, next to a sharp cutoff. For * calculating the windowing vector, we need a parameter beta, found as follows: */ if (kdb<0) return ERR_EQ_SIDELOBES; if (kdb>50) beta = 0.1102*(kdb-8.7); else if (kdb>20.96 && kdb<=50.0) beta = 0.58417*powf((kdb-20.96), 0.4) + 0.07886*(kdb-20.96); else beta=0.0; // Note: i0f is the floating point in & out zero'th order Bessel function (see mathDSP_F32.h) kbes = 1.0f / mathEqualizer.i0f(beta); // An additional derived parameter used in loop // Apply the Kaiser window scaleXj2 = 2.0f/(float32_t)nFIR; scaleXj2 *= scaleXj2; for (j=0; j<=nHalfFIR; j++) { // For 199 Taps, this is 0 to 99 xj2 = (int16_t)(0.5f+(float32_t)j); xj2 = scaleXj2*xj2*xj2; WindowWt=kbes*(mathEqualizer.i0f(beta*sqrt(1.0-xj2))); cf32f[nHalfFIR + j] *= WindowWt; // Apply the Kaiser window to upper half cf32f[nHalfFIR - j] = cf32f[nHalfFIR +j]; // and create the lower half } // And fill in the members of fir_inst arm_fir_init_f32(&fir_inst, nFIR, (float32_t *)cf32f, &StateF32[0], (uint32_t)block_size); return 0; } /* Calculate response in dB. Leave nFreq point result in array rdb[] supplied * by the calling .INO See Parks and Burris, "Digital Filter Design," p27 (Type 1). */ void AudioFilterEqualizer_F32::getResponse(uint16_t nFreq, float32_t *rdb) { uint16_t i, j; float32_t bt; float32_t piOnNfreq; uint16_t nHalfFIR; nHalfFIR = (nFIR - 1)/2; piOnNfreq = MF_PI / (float32_t)nFreq; for (i=0; i<nFreq; i++) { bt = cf32f[nHalfFIR];//bt = 0.5f*cf32f[nHalfFIR]; // Center coefficient for (j=0; j<nHalfFIR; j++) // Add in the others twice, as they are symmetric bt += 2.0f*cf32f[j]*cosf(piOnNfreq*(float32_t)((nHalfFIR-j)*i)); rdb[i] = 20.0f*log10f(fabsf(bt)); // Convert to dB } }