parent
2a2bb5b1b3
commit
ea09719632
@ -0,0 +1,187 @@ |
|||||||
|
/*
|
||||||
|
* analyze_fft1024_iq_F32.cpp Assembled by Bob Larkin 3 Mar 2021 |
||||||
|
* Rev 6 Mar 2021 - Added setXAxis() |
||||||
|
* |
||||||
|
* Converted to F32 floating point input and also extended |
||||||
|
* for complex I and Q inputs |
||||||
|
* * Adapted all I/O to be F32 floating point for OpenAudio_ArduinoLibrary |
||||||
|
* * Future: Add outputs for I & Q FFT x2 for overlapped FFT |
||||||
|
* * Windowing None, Hann, Kaiser and Blackman-Harris. |
||||||
|
* |
||||||
|
* Conversion Copyright (c) 2021 Bob Larkin |
||||||
|
* Same MIT license as PJRC: |
||||||
|
* |
||||||
|
* Audio Library for Teensy 3.X |
||||||
|
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com |
||||||
|
* |
||||||
|
* Development of this audio library was funded by PJRC.COM, LLC by sales of |
||||||
|
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop |
||||||
|
* open source software by purchasing Teensy or other PJRC products. |
||||||
|
* |
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy |
||||||
|
* of this software and associated documentation files (the "Software"), to deal |
||||||
|
* in the Software without restriction, including without limitation the rights |
||||||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
||||||
|
* copies of the Software, and to permit persons to whom the Software is |
||||||
|
* furnished to do so, subject to the following conditions: |
||||||
|
* |
||||||
|
* The above copyright notice, development funding notice, and this permission |
||||||
|
* notice shall be included in all copies or substantial portions of the Software. |
||||||
|
* |
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
||||||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
||||||
|
* THE SOFTWARE. |
||||||
|
*/ |
||||||
|
#include <Arduino.h> |
||||||
|
#include "analyze_fft1024_iq_F32.h" |
||||||
|
|
||||||
|
// Note: Suppports block size of 128 only. Very "built in."
|
||||||
|
|
||||||
|
// Move audio data from audio_block_f32_t to the interleaved FFT instance buffer.
|
||||||
|
static void copy_to_fft_buffer1(void *destination, const void *sourceI, const void *sourceQ) { |
||||||
|
const float *srcI = (const float *)sourceI; |
||||||
|
const float *srcQ = (const float *)sourceQ; |
||||||
|
float *dst = (float *)destination; // part of fft_buffer array. 256 floats per call
|
||||||
|
for (int i=0; i < 128; i++) { |
||||||
|
*dst++ = *srcI++; // real sample, interleave
|
||||||
|
*dst++ = *srcQ++; // imag
|
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
static void apply_window_to_fft_buffer1(void *fft_buffer, const void *window) { |
||||||
|
float *buf = (float *)fft_buffer; // 0th entry is real (do window) 1st is imag
|
||||||
|
const float *win = (float *)window; |
||||||
|
for (int i=0; i < 1024; i++) { |
||||||
|
buf[2*i] *= *win; // real
|
||||||
|
buf[2*i + 1] *= *win++; // imag
|
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
void AudioAnalyzeFFT1024_IQ_F32::update(void) { |
||||||
|
audio_block_f32_t *block_i,*block_q; |
||||||
|
int ii; |
||||||
|
|
||||||
|
block_i = receiveReadOnly_f32(0); |
||||||
|
if (!block_i) return; |
||||||
|
block_q = receiveReadOnly_f32(1); |
||||||
|
if (!block_q) { |
||||||
|
release(block_i); |
||||||
|
return; |
||||||
|
} |
||||||
|
// Here with two new blocks of data
|
||||||
|
|
||||||
|
switch (state) { |
||||||
|
case 0: |
||||||
|
blocklist_i[0] = block_i; blocklist_q[0] = block_q; |
||||||
|
state = 1; |
||||||
|
break; |
||||||
|
case 1: |
||||||
|
blocklist_i[1] = block_i; blocklist_q[1] = block_q; |
||||||
|
state = 2; |
||||||
|
break; |
||||||
|
case 2: |
||||||
|
blocklist_i[2] = block_i; blocklist_q[2] = block_q; |
||||||
|
state = 3; |
||||||
|
break; |
||||||
|
case 3: |
||||||
|
blocklist_i[3] = block_i; blocklist_q[3] = block_q; |
||||||
|
state = 4; |
||||||
|
break; |
||||||
|
case 4: |
||||||
|
blocklist_i[4] = block_i; blocklist_q[4] = block_q; |
||||||
|
state = 5; |
||||||
|
break; |
||||||
|
case 5: |
||||||
|
blocklist_i[5] = block_i; blocklist_q[5] = block_q; |
||||||
|
state = 6; |
||||||
|
break; |
||||||
|
case 6: |
||||||
|
blocklist_i[6] = block_i; blocklist_q[6] = block_q; |
||||||
|
state = 7; |
||||||
|
break; |
||||||
|
case 7: |
||||||
|
blocklist_i[7] = block_i; blocklist_q[7] = block_q; |
||||||
|
copy_to_fft_buffer1(fft_buffer+0x000, blocklist_i[0]->data, blocklist_q[0]->data); |
||||||
|
copy_to_fft_buffer1(fft_buffer+0x100, blocklist_i[1]->data, blocklist_q[1]->data); |
||||||
|
copy_to_fft_buffer1(fft_buffer+0x200, blocklist_i[2]->data, blocklist_q[2]->data); |
||||||
|
copy_to_fft_buffer1(fft_buffer+0x300, blocklist_i[3]->data, blocklist_q[3]->data); |
||||||
|
copy_to_fft_buffer1(fft_buffer+0x400, blocklist_i[4]->data, blocklist_q[4]->data); |
||||||
|
copy_to_fft_buffer1(fft_buffer+0x500, blocklist_i[5]->data, blocklist_q[5]->data); |
||||||
|
copy_to_fft_buffer1(fft_buffer+0x600, blocklist_i[6]->data, blocklist_q[6]->data); |
||||||
|
copy_to_fft_buffer1(fft_buffer+0x700, blocklist_i[7]->data, blocklist_q[7]->data); |
||||||
|
if (pWin) |
||||||
|
apply_window_to_fft_buffer1(fft_buffer, window); |
||||||
|
|
||||||
|
#if defined(__IMXRT1062__) |
||||||
|
// Teensyduino core for T4.x supports arm_cfft_f32
|
||||||
|
// arm_cfft_f32 (const arm_cfft_instance_f32 *S, float32_t *p1, uint8_t ifftFlag, uint8_t bitReverseFlag)
|
||||||
|
arm_cfft_f32(&Sfft, fft_buffer, 0, 1); |
||||||
|
#else |
||||||
|
// For T3.x go back to old (deprecated) style
|
||||||
|
arm_cfft_radix4_f32(&fft_inst, fft_buffer); |
||||||
|
#endif |
||||||
|
|
||||||
|
count++; |
||||||
|
for (int i = 0; i < 512; i++) { |
||||||
|
// From complex FFT the "negative frequencies" are mirrors of the frequencies above fs/2. So, we get
|
||||||
|
// frequencies from 0 to fs by re-arranging the coefficients. These are powers (not Volts)
|
||||||
|
// See DD4WH SDR
|
||||||
|
float ss0 = fft_buffer[2 * i] * fft_buffer[2 * i] + |
||||||
|
fft_buffer[2 * i + 1] * fft_buffer[2 * i + 1]; |
||||||
|
float ss1 = fft_buffer[2 * (i + 512)] * fft_buffer[2 * (i + 512)] + |
||||||
|
fft_buffer[2 * (i + 512) + 1] * fft_buffer[2 * (i + 512) + 1]; |
||||||
|
|
||||||
|
if(count==1) { // Starting new average
|
||||||
|
sumsq[i+512] = ss0; |
||||||
|
sumsq[i] = ss1; |
||||||
|
} |
||||||
|
else if (count <= nAverage) { // Adding on to average
|
||||||
|
sumsq[i+512] += ss0; |
||||||
|
sumsq[i] += ss1; |
||||||
|
} |
||||||
|
} |
||||||
|
if (count >= nAverage) { // Average is finished
|
||||||
|
count = 0; |
||||||
|
float inAf = 1.0f/(float)nAverage; |
||||||
|
for (int i=0; i < 1024; i++) { |
||||||
|
// xAxis, bit 0 left/right; bit 1 low to high
|
||||||
|
if(xAxis & 0X02) |
||||||
|
ii = i; |
||||||
|
else |
||||||
|
ii = i^512; |
||||||
|
if(xAxis & 0X01) |
||||||
|
ii = (1023 - ii); |
||||||
|
|
||||||
|
if(outputType==FFT_RMS) |
||||||
|
output[i] = sqrtf(inAf*sumsq[ii]); |
||||||
|
else if(outputType==FFT_POWER) |
||||||
|
output[i] = inAf*sumsq[ii]; |
||||||
|
else if(outputType==FFT_DBFS) |
||||||
|
output[i] = 10.0f*log10f(inAf*sumsq[ii])-54.1854f; // Scaled to FS sine wave
|
||||||
|
else |
||||||
|
output[i] = 0.0f; |
||||||
|
} |
||||||
|
} // end of Average is Finished
|
||||||
|
outputflag = true; |
||||||
|
|
||||||
|
release(blocklist_i[0]); release(blocklist_q[0]); |
||||||
|
release(blocklist_i[1]); release(blocklist_q[1]); |
||||||
|
release(blocklist_i[2]); release(blocklist_q[2]); |
||||||
|
release(blocklist_i[3]); release(blocklist_q[3]); |
||||||
|
|
||||||
|
blocklist_i[0] = blocklist_i[4]; |
||||||
|
blocklist_i[1] = blocklist_i[5]; |
||||||
|
blocklist_i[2] = blocklist_i[6]; |
||||||
|
blocklist_i[3] = blocklist_i[7]; |
||||||
|
blocklist_q[0] = blocklist_q[4]; |
||||||
|
blocklist_q[1] = blocklist_q[5]; |
||||||
|
blocklist_q[2] = blocklist_q[6]; |
||||||
|
blocklist_q[3] = blocklist_q[7]; |
||||||
|
state = 4; |
||||||
|
break; // From case 7
|
||||||
|
} // End of switch & case 7
|
||||||
|
} // End update()
|
@ -0,0 +1,304 @@ |
|||||||
|
/*
|
||||||
|
* Analyze_fft1024_iq_F32.h Assembled by Bob Larkin 3 Mar 2021 |
||||||
|
* |
||||||
|
* Rev 6 Mar 2021 - Added setXAxis() |
||||||
|
* Does Fast Fourier Transform of a 1024 point complex (I-Q) input. |
||||||
|
* Output is one of three measures of the power in each of the 1024 |
||||||
|
* output bins, Power, RMS level or dB relative to a full scale |
||||||
|
* sine wave. Windowing of the input data is provided for to reduce |
||||||
|
* spreading of the power in the output bins. All inputs are Teensy |
||||||
|
* floating point extension (_F32) and all outputs are floating point. |
||||||
|
* |
||||||
|
* Features include: |
||||||
|
* * I and Q inputs are OpenAudio_Arduino Library F32 compatible. |
||||||
|
* * FFT output for every 512 inputs to overlapped FFTs to |
||||||
|
* compensate for windowing. |
||||||
|
* * Windowing None, Hann, Kaiser and Blackman-Harris. |
||||||
|
* * Multiple bin-sum output to simulate wider bins. |
||||||
|
* * Power averaging of multiple FFT |
||||||
|
* * Soon: F32 audio outputs for I & Q |
||||||
|
* |
||||||
|
* Conversion Copyright (c) 2021 Bob Larkin |
||||||
|
* Same MIT license as PJRC: |
||||||
|
* |
||||||
|
* From original real FFT: |
||||||
|
* Audio Library for Teensy 3.X |
||||||
|
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com |
||||||
|
* |
||||||
|
* Development of this audio library was funded by PJRC.COM, LLC by sales of |
||||||
|
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop |
||||||
|
* open source software by purchasing Teensy or other PJRC products. |
||||||
|
* |
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy |
||||||
|
* of this software and associated documentation files (the "Software"), to deal |
||||||
|
* in the Software without restriction, including without limitation the rights |
||||||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
||||||
|
* copies of the Software, and to permit persons to whom the Software is |
||||||
|
* furnished to do so, subject to the following conditions: |
||||||
|
* |
||||||
|
* The above copyright notice, development funding notice, and this permission |
||||||
|
* notice shall be included in all copies or substantial portions of the Software. |
||||||
|
* |
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
||||||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
||||||
|
* THE SOFTWARE. |
||||||
|
*/ |
||||||
|
|
||||||
|
/* Does complex input FFT of 1024 points. Multiple non-audio (via functions)
|
||||||
|
* output formats of RMS (same as I16 version, and default), |
||||||
|
* Power or dBFS (full scale). Output can be bin by bin or a pointer to |
||||||
|
* the output array is available. Several window functions are provided by |
||||||
|
* in-class design, or a custom window can be provided from the INO. |
||||||
|
* |
||||||
|
* Functions (See comments below and #defines above: |
||||||
|
* bool available() |
||||||
|
* float read(unsigned int binNumber) |
||||||
|
* float read(unsigned int binFirst, unsigned int binLast) |
||||||
|
* int windowFunction(int wNum) |
||||||
|
* int windowFunction(int wNum, float _kdb) // Kaiser only
|
||||||
|
* float* getData(void) |
||||||
|
* float* getWindow(void) |
||||||
|
* void putWindow(float *pwin) |
||||||
|
* void setNAverage(int NAve) // >=1
|
||||||
|
* void setOutputType(int _type) |
||||||
|
* void setXAxis(uint8_t _xAxis) // 0, 1, 2, 3
|
||||||
|
* |
||||||
|
* x-Axis direction and offset per setXAxis(xAxis) for sine to I |
||||||
|
* and cosine to Q. |
||||||
|
* If xAxis=0 f=fs/2 in middle, f=0 on right edge |
||||||
|
* If xAxis=1 f=fs/2 in middle, f=0 on left edge |
||||||
|
* If xAxis=2 f=fs/2 on left edge, f=0 in middle |
||||||
|
* If xAxis=3 f=fs/2 on right edgr, f=0 in middle |
||||||
|
* If there is 180 degree phase shift to I or Q these all get reversed. |
||||||
|
* |
||||||
|
* Timing, max is longest update() time: (TBD) |
||||||
|
* T3.6 Windowed, RMS out, - uSec max |
||||||
|
* T3.6 Windowed, Power Out, - uSec max |
||||||
|
* T3.6 Windowed, dBFS out, - uSec max |
||||||
|
* No Window saves 60 uSec on T3.6 for any output. |
||||||
|
* T4.0 Windowed, RMS Out, - uSec |
||||||
|
* |
||||||
|
* Scaling: |
||||||
|
* Full scale for floating point DSP is a nebulous concept. Normally the |
||||||
|
* full scale is -1.0 to +1.0. This is an unscaled FFT and for a sine |
||||||
|
* wave centered in frequency on a bin and of FS amplitude, the power |
||||||
|
* at that center bin will grow by 1024^2/4 = 262144 without windowing. |
||||||
|
* Windowing loss cuts this down. The RMS level can grow to sqrt(262144) |
||||||
|
* or 512. The dBFS has been scaled to make this max value 0 dBFS by |
||||||
|
* removing 54.2 dB. With floating point, the dynamic range is maintained |
||||||
|
* no matter how it is scaled, but this factor needs to be considered |
||||||
|
* when building the INO. |
||||||
|
*/ |
||||||
|
|
||||||
|
#ifndef analyze_fft1024iq_h_ |
||||||
|
#define analyze_fft1024iq_h_ |
||||||
|
|
||||||
|
#include "Arduino.h" |
||||||
|
#include "AudioStream_F32.h" |
||||||
|
#include "arm_math.h" |
||||||
|
#include "mathDSP_F32.h" |
||||||
|
#if defined(__IMXRT1062__) |
||||||
|
#include "arm_const_structs.h" |
||||||
|
#endif |
||||||
|
|
||||||
|
#define FFT_RMS 0 |
||||||
|
#define FFT_POWER 1 |
||||||
|
#define FFT_DBFS 2 |
||||||
|
|
||||||
|
#define NO_WINDOW 0 |
||||||
|
#define AudioWindowNone 0 |
||||||
|
#define AudioWindowHanning1024 1 |
||||||
|
#define AudioWindowKaiser1024 2 |
||||||
|
#define AudioWindowBlackmanHarris1024 3 |
||||||
|
|
||||||
|
class AudioAnalyzeFFT1024_IQ_F32 : public AudioStream_F32 { |
||||||
|
//GUI: inputs:2, outputs:4 //this line used for automatic generation of GUI node
|
||||||
|
//GUI: shortName:AnalyzeFFT1024IQ
|
||||||
|
public: |
||||||
|
AudioAnalyzeFFT1024_IQ_F32() : AudioStream_F32(2, inputQueueArray) { |
||||||
|
// __MK20DX128__ T_LC; __MKL26Z64__ T3.0; __MK20DX256__T3.1 and T3.2
|
||||||
|
// __MK64FX512__) T3.5; __MK66FX1M0__ T3.6; __IMXRT1062__ T4.0 and T4.1
|
||||||
|
#if defined(__IMXRT1062__) |
||||||
|
// Teensy4 core library has the right files for new FFT
|
||||||
|
// arm CMSIS library has predefined structures of type arm_cfft_instance_f32
|
||||||
|
Sfft = arm_cfft_sR_f32_len1024; // This is one of the structures
|
||||||
|
#else |
||||||
|
arm_cfft_radix4_init_f32(&fft_inst, 1024, 0, 1); // for T3.x
|
||||||
|
#endif |
||||||
|
useHanningWindow(); |
||||||
|
} |
||||||
|
// There is no varient for "settings," as blocks other than 128 are
|
||||||
|
// not supported and, nothing depends on sample rate so we don't need that.
|
||||||
|
|
||||||
|
// Returns true when output data is available.
|
||||||
|
bool available() { |
||||||
|
if (outputflag == true) { |
||||||
|
outputflag = false; // No double returns
|
||||||
|
return true; |
||||||
|
} |
||||||
|
return false; |
||||||
|
} |
||||||
|
|
||||||
|
// Returns a single bin output
|
||||||
|
float read(unsigned int binNumber) { |
||||||
|
if (binNumber>1023 || binNumber<0) return 0.0; |
||||||
|
return output[binNumber]; |
||||||
|
} |
||||||
|
|
||||||
|
// Return sum of several bins. Normally use with power output.
|
||||||
|
// This produces the equivalent of bigger bins.
|
||||||
|
float read(unsigned int binFirst, unsigned int binLast) { |
||||||
|
if (binFirst > binLast) { |
||||||
|
unsigned int tmp = binLast; |
||||||
|
binLast = binFirst; |
||||||
|
binFirst = tmp; |
||||||
|
} |
||||||
|
if (binFirst > 1023) return 0.0; |
||||||
|
if (binLast > 1023) binLast = 1023; |
||||||
|
float sum = 0; |
||||||
|
do { |
||||||
|
sum += output[binFirst++]; |
||||||
|
} while (binFirst <= binLast); |
||||||
|
return sum; |
||||||
|
} |
||||||
|
|
||||||
|
// Sets None, Hann, or Blackman-Harris window with no parameter
|
||||||
|
int windowFunction(int wNum) { |
||||||
|
if(wNum == AudioWindowKaiser1024) |
||||||
|
return -1; // Kaiser needs the kdb
|
||||||
|
windowFunction(wNum, 0.0f); |
||||||
|
return 0; |
||||||
|
} |
||||||
|
|
||||||
|
int windowFunction(int wNum, float _kdb) { |
||||||
|
float kd; |
||||||
|
pWin = window; |
||||||
|
if(wNum == NO_WINDOW) |
||||||
|
pWin = NULL; |
||||||
|
else if (wNum == AudioWindowKaiser1024) { |
||||||
|
if(_kdb<20.0f) |
||||||
|
kd = 20.0f; |
||||||
|
else |
||||||
|
kd = _kdb; |
||||||
|
useKaiserWindow(kd); |
||||||
|
} |
||||||
|
else if (wNum == AudioWindowBlackmanHarris1024) |
||||||
|
useBHWindow(); |
||||||
|
else |
||||||
|
useHanningWindow(); // Default
|
||||||
|
return 0; |
||||||
|
} |
||||||
|
|
||||||
|
// Fast pointer transfer. Be aware that the data will go away
|
||||||
|
// after the next 256 data points occur.
|
||||||
|
float* getData(void) { |
||||||
|
// available() sets outputflag false
|
||||||
|
return output; |
||||||
|
} |
||||||
|
|
||||||
|
// You can use this to design windows
|
||||||
|
float* getWindow(void) { |
||||||
|
return window; |
||||||
|
} |
||||||
|
|
||||||
|
// Bring custom window from the INO
|
||||||
|
void putWindow(float *pwin) { |
||||||
|
float *p = window; |
||||||
|
for(int i=0; i<1024; i++) |
||||||
|
*p++ = *pwin++; // Copy for the FFT
|
||||||
|
} |
||||||
|
|
||||||
|
// Number of FFT averaged in the output
|
||||||
|
void setNAverage(int _nAverage) { |
||||||
|
nAverage = _nAverage; |
||||||
|
} |
||||||
|
|
||||||
|
// Output RMS (default), power or dBFS (FFT_RMS, FFT_POWER, FFT_DBFS)
|
||||||
|
void setOutputType(int _type) { |
||||||
|
outputType = _type; |
||||||
|
} |
||||||
|
|
||||||
|
// xAxis, bit 0 left/right; bit 1 low to high; default 0X03
|
||||||
|
void setXAxis(uint8_t _xAxis) { |
||||||
|
xAxis = _xAxis; |
||||||
|
} |
||||||
|
|
||||||
|
virtual void update(void); |
||||||
|
|
||||||
|
private: |
||||||
|
float output[1024]; |
||||||
|
float window[1024]; |
||||||
|
float *pWin = window; |
||||||
|
float fft_buffer[2048]; |
||||||
|
float sumsq[1024]; // Avoid re-use of output[]
|
||||||
|
uint8_t state = 0; |
||||||
|
bool outputflag = false; |
||||||
|
audio_block_f32_t *inputQueueArray[2]; |
||||||
|
audio_block_f32_t *blocklist_i[8]; |
||||||
|
audio_block_f32_t *blocklist_q[8]; |
||||||
|
|
||||||
|
#if defined(__IMXRT1062__) |
||||||
|
// For T4.x
|
||||||
|
// const static arm_cfft_instance_f32 arm_cfft_sR_f32_len1024;
|
||||||
|
arm_cfft_instance_f32 Sfft; |
||||||
|
#else |
||||||
|
arm_cfft_radix4_instance_f32 fft_inst; |
||||||
|
#endif |
||||||
|
|
||||||
|
int outputType = FFT_RMS; //Same type as I16 version init
|
||||||
|
int count = 0; |
||||||
|
int nAverage = 1; |
||||||
|
uint8_t xAxis = 0x03; |
||||||
|
|
||||||
|
// The Hann window is a good all-around window
|
||||||
|
void useHanningWindow(void) { |
||||||
|
for (int i=0; i < 1024; i++) { |
||||||
|
// 2*PI/1023 = 0.006141921
|
||||||
|
window[i] = 0.5*(1.0 - cosf(0.006141921f*(float)i)); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
// Blackman-Harris produces a first sidelobe more than 90 dB down.
|
||||||
|
// The price is a bandwidth of about 2 bins. Very useful at times.
|
||||||
|
void useBHWindow(void) { |
||||||
|
for (int i=0; i < 1024; i++) { |
||||||
|
float kx = 0.006141921; // 2*PI/1023
|
||||||
|
int ix = (float) i; |
||||||
|
window[i] = 0.35875 - |
||||||
|
0.48829*cosf( kx*ix) + |
||||||
|
0.14128*cosf(2.0f*kx*ix) - |
||||||
|
0.01168*cosf(3.0f*kx*ix); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
/* The windowing function here is that of James Kaiser. This has a number
|
||||||
|
* of desirable features. The sidelobes drop off as the frequency away from a transition. |
||||||
|
* Also, the tradeoff of sidelobe level versus cutoff rate is variable. |
||||||
|
* Here we specify it in terms of kdb, the highest sidelobe, in dB, next to a sharp cutoff. For |
||||||
|
* calculating the windowing vector, we need a parameter beta, found as follows: |
||||||
|
*/ |
||||||
|
void useKaiserWindow(float kdb) { |
||||||
|
float32_t beta, kbes, xn2; |
||||||
|
mathDSP_F32 mathEqualizer; // For Bessel function
|
||||||
|
|
||||||
|
if (kdb < 20.0f) |
||||||
|
beta = 0.0; |
||||||
|
else |
||||||
|
beta = -2.17+0.17153*kdb-0.0002841*kdb*kdb; // Within a dB or so
|
||||||
|
|
||||||
|
// Note: i0f is the fp zero'th order modified Bessel function (see mathDSP_F32.h)
|
||||||
|
kbes = 1.0f / mathEqualizer.i0f(beta); // An additional derived parameter used in loop
|
||||||
|
for (int n=0; n<512; n++) { |
||||||
|
xn2 = 0.5f+(float32_t)n; |
||||||
|
// 4/(1023^2)=0.00000382215877f
|
||||||
|
xn2 = 0.00000382215877f*xn2*xn2; |
||||||
|
window[511 - n]=kbes*(mathEqualizer.i0f(beta*sqrtf(1.0-xn2))); |
||||||
|
window[512 + n] = window[511 - n]; |
||||||
|
} |
||||||
|
} |
||||||
|
}; |
||||||
|
#endif |
@ -0,0 +1,68 @@ |
|||||||
|
|
||||||
|
// TestFFT1024iq.ino for Teensy 3.x, 4.x
|
||||||
|
// Bob Larkin 3 March 2021// Rev to include xAxis control. 6 Mar 2021
|
||||||
|
|
||||||
|
// Generate Sin and Cosine pair and input to IQ FFT.
|
||||||
|
// Serial Print out powers of all 1024 bins in
|
||||||
|
// dB relative to Sine Wave Full Scale
|
||||||
|
|
||||||
|
// Public Domain
|
||||||
|
|
||||||
|
#include "OpenAudio_ArduinoLibrary.h" |
||||||
|
#include "AudioStream_F32.h" |
||||||
|
|
||||||
|
// GUItool: begin automatically generated code
|
||||||
|
AudioSynthSineCosine_F32 sine_cos1; //xy=76,532
|
||||||
|
AudioAnalyzeFFT1024_IQ_F32 FFT1024iq1; //xy=243,532
|
||||||
|
AudioOutputI2S_F32 audioOutI2S1; //xy=246,591
|
||||||
|
AudioConnection_F32 patchCord1(sine_cos1, 0, FFT1024iq1, 0); |
||||||
|
AudioConnection_F32 patchCord2(sine_cos1, 1, FFT1024iq1, 1); |
||||||
|
// GUItool: end automatically generated code
|
||||||
|
|
||||||
|
void setup(void) { |
||||||
|
float* pPwr; |
||||||
|
|
||||||
|
Serial.begin(9600); |
||||||
|
delay(1000); |
||||||
|
AudioMemory_F32(50); |
||||||
|
Serial.println("FFT1024IQ Test"); |
||||||
|
|
||||||
|
sine_cos1.amplitude(1.0f); // Initialize Waveform Generator
|
||||||
|
|
||||||
|
// Pick T3.6 bin center
|
||||||
|
//sine_cos1.frequency(689.33);
|
||||||
|
|
||||||
|
// or pick T4.x bin center
|
||||||
|
sine_cos1.frequency(689.0625f); |
||||||
|
|
||||||
|
// or pick any old frequency
|
||||||
|
//sine_cos1.frequency(7100.0);
|
||||||
|
|
||||||
|
// elect the output format
|
||||||
|
FFT1024iq1.setOutputType(FFT_DBFS); |
||||||
|
|
||||||
|
// Select the wndow function
|
||||||
|
//FFT1024iq1.windowFunction(AudioWindowNone);
|
||||||
|
//FFT1024iq1.windowFunction(AudioWindowHanning1024);
|
||||||
|
//FFT1024iq1.windowFunction(AudioWindowKaiser1024, 55.0f);
|
||||||
|
FFT1024iq1.windowFunction(AudioWindowBlackmanHarris1024); |
||||||
|
|
||||||
|
// Uncomment to Serial print window function
|
||||||
|
//float* pw = FFT1024iq1.getWindow(); // Print window
|
||||||
|
//for (int i=0; i<512; i++) Serial.println(pw[i], 4);
|
||||||
|
|
||||||
|
// xAxis, bit 0 left/right; bit 1 low to high; default 0X03
|
||||||
|
FFT1024iq1.setXAxis(0X03); |
||||||
|
|
||||||
|
delay(1000); |
||||||
|
// Print output, once
|
||||||
|
if( FFT1024iq1.available() ) { |
||||||
|
pPwr = FFT1024iq1.getData(); |
||||||
|
for(int i=0; i<1024; i++) |
||||||
|
Serial.println(*(pPwr + i), 8 ); |
||||||
|
} |
||||||
|
Serial.println(""); |
||||||
|
} |
||||||
|
|
||||||
|
void loop(void) { |
||||||
|
} |
Loading…
Reference in new issue