parent
ff049cad08
commit
9912cc8e9f
@ -0,0 +1,103 @@ |
||||
/*
|
||||
* AudioLMSDenoiseNotch_F32 |
||||
* |
||||
* 22 January 2022 copyright (c)Robert Larkin 2022 |
||||
* |
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy |
||||
* of this software and associated documentation files (the "Software"), to deal |
||||
* in the Software without restriction, including without limitation the rights |
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
||||
* copies of the Software, and to permit persons to whom the Software is |
||||
* furnished to do so, subject to the following conditions: |
||||
* |
||||
* The above copyright notice, development funding notice, and this permission |
||||
* notice shall be included in all copies or substantial portions of the Software. |
||||
* |
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
||||
* THE SOFTWARE. |
||||
*/ |
||||
|
||||
#include "AudioStream_F32.h" |
||||
#include "AudioLMSDenoiseNotch_F32.h" |
||||
|
||||
void AudioLMSDenoiseNotch_F32::update(void) |
||||
{ |
||||
uint16_t j, k; |
||||
float32_t blockDataIn, error, firOut; |
||||
audio_block_f32_t *block; |
||||
|
||||
block = AudioStream_F32::receiveWritable_f32(); |
||||
if (!block) return; |
||||
|
||||
if(!doLMS) |
||||
{ |
||||
AudioStream_F32::transmit(block); |
||||
AudioStream_F32::release(block); |
||||
return; |
||||
} |
||||
|
||||
audio_block_f32_t *blockOut; |
||||
blockOut = AudioStream_F32::allocate_f32(); // Output block
|
||||
if (!blockOut) |
||||
{ |
||||
AudioStream_F32::transmit(block); |
||||
AudioStream_F32::release(block); |
||||
return; |
||||
} |
||||
|
||||
for(int i=0; i<128; i++) |
||||
{ |
||||
blockDataIn = block->data[i]; |
||||
|
||||
// Leakage on one coefficient
|
||||
coeff[numLeak] *= decay; // Decay one coefficient
|
||||
if(++numLeak >= lengthDataF) // Wrap around, if needed
|
||||
numLeak = 0; |
||||
|
||||
// Circular delay line to find correlated components
|
||||
dataD[kNextD] = blockDataIn; // Get a new data point from block
|
||||
// Rotate to next higher k index
|
||||
|
||||
if(++kNextD >= lengthDataD) // Next spot in delay line
|
||||
kNextD = 0; |
||||
|
||||
// Update the FIR.
|
||||
dataF[kOffsetF] = dataD[kNextD]; // Input FIR is output Delay
|
||||
firOut = 0.0f; |
||||
for(j=0; j<lengthDataF; j++) // Over all coefficients
|
||||
{ |
||||
k = (j + kOffsetF) & kMask; // Data circular buffer
|
||||
firOut +=coeff[j]*dataF[k]; |
||||
} |
||||
|
||||
// Compute the error, the difference between the data point
|
||||
// just received and the FIR output.
|
||||
error = blockDataIn - firOut; |
||||
|
||||
// Update the coefficients
|
||||
for(j=0; j<lengthDataF; j++) |
||||
{ |
||||
k = (j + kOffsetF) & kMask; |
||||
coeff[j] = coeff[j] + beta*error*dataF[k]; |
||||
} |
||||
|
||||
// Move to next positions in circular data buffer via kOffsetF
|
||||
if(++kOffsetF >= lengthDataF) |
||||
kOffsetF = 0; // Wrap the FIR circular buffer
|
||||
|
||||
// fir out to output block
|
||||
if(what == DENOISE) |
||||
blockOut->data[i] = firOut; |
||||
else |
||||
blockOut->data[i] = blockDataIn; // error; // Auto-Notch
|
||||
} |
||||
//transmit the block and be done
|
||||
AudioStream_F32::transmit(blockOut); |
||||
AudioStream_F32::release(block); |
||||
AudioStream_F32::release(blockOut); |
||||
} |
@ -0,0 +1,154 @@ |
||||
/*
|
||||
* AudioLMSDenoiseNotch_F32.h |
||||
* |
||||
* Created: Bob Larkin, January 2022 |
||||
* Purpose; LMS DeNoise for audio. Assumes floating-point data. |
||||
* |
||||
* 22 January 2022 copyright (c)Robert Larkin 2022 |
||||
* |
||||
* Permission is hereby granted, free of charge, to any person obtaining a copy |
||||
* of this software and associated documentation files (the "Software"), to deal |
||||
* in the Software without restriction, including without limitation the rights |
||||
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
||||
* copies of the Software, and to permit persons to whom the Software is |
||||
* furnished to do so, subject to the following conditions: |
||||
* |
||||
* The above copyright notice, development notice, and this permission |
||||
* notice shall be included in all copies or substantial portions of the Software. |
||||
* |
||||
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
||||
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||||
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
||||
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
||||
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
||||
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
||||
* THE SOFTWARE. |
||||
*/ |
||||
|
||||
/* *** Notes ***
|
||||
* The LMS DeNoise is effective for improving the signal-to-noise ratio (S/N) |
||||
* when the input S/N is reasonably high. When the signal is "buried" in the noise |
||||
* it is much less effective. Thus it is effective as a radio "squelch" for SSB. |
||||
* |
||||
* The auto-notch is very effective at removing annoying tones when they are |
||||
* reasonably strong. Again for radio systems, this can be quite useful. |
||||
* The initialization selects whether DeNoise or AutoNotch is used. It makes |
||||
* no sense to use both at once as, in a perfect world, would remove everything. |
||||
* |
||||
* The LMS algorithm for optimization was first proposed by |
||||
* Widrow and Hoff in 1960. |
||||
* It has been applied extensively due to its simplicity. The form here |
||||
* optimizes the coefficients of a FIR filter to recognize any coherency |
||||
* to the input signal. This can be use to reduce non-coherent noise by |
||||
* using the FIR filter output. Alternatively, the input signal can be |
||||
* subtracted from the FIR filter output to remove coherent signals, |
||||
* producing the so called "auto-notch." |
||||
* |
||||
* Johan, dsp-10 <<<<<<<<<<<<<<<<<<<< |
||||
* |
||||
* beta and decay |
||||
* |
||||
* Initialization also sets the size of the FIR buffer used to filter signal |
||||
* and noise. Small buffers respond to change quickly. Large buffers can work |
||||
* on lower audio frequencies. Experiment with this. The FIR buffer is set in |
||||
* powers of 2, such as 32, 64 or 128. The maximum value is set at compile |
||||
* time by the #define MAX_FIR (default 128). |
||||
* |
||||
* Initialization sets the decorrelation delay size. If the LMS is preceded by |
||||
* a narrow band filter, this delay must be greater. Wide band systems can |
||||
* work with less delay. Experiment with this, also. The DELAY buffer size |
||||
* can be any value from 2 to MAX DELAY. The maximum value is set at compile |
||||
* time by the #define MAX_DELAY (default 16). |
||||
* |
||||
* This block behaves as a pass-through filter with one input and one output. |
||||
* |
||||
* The Teensy 3.6 needs 690 microseconds per 128 block update using a FIR |
||||
* buffer size of 32. It needs 1335 microseconds using 64 FIR Buffer. |
||||
* Note that the ARM library LMS routines might improve these |
||||
* numbers. Those routines use double buffer sizes to remove the |
||||
* need for the circular buffering used here. It also uses x4 loop un-wrapping. |
||||
* The price is a signifigantly more complex setup involving moving of data |
||||
* and the added memory. |
||||
* |
||||
* Teensy 4.x needs 140 microseconds for 32 FIR word buffer size, |
||||
* 270 for 64, and 529 microseconds for 128. |
||||
* |
||||
* All timing was done with a delay buffer of 4, but this size has |
||||
* very little effect, anyway. |
||||
*/ |
||||
|
||||
#ifndef _AudioLMSDenoiseNotch_F32_h |
||||
#define _AudioLMSDenoiseNotch_F32_h |
||||
|
||||
#include <AudioStream_F32.h> |
||||
#include "arm_math.h" |
||||
|
||||
#define MAX_FIR 256 |
||||
#define MAX_DELAY 16 |
||||
#define DENOISE 1 |
||||
#define NOTCH 2 |
||||
|
||||
class AudioLMSDenoiseNotch_F32 : public AudioStream_F32 |
||||
{ |
||||
//GUI: inputs:1, outputs:1 //this line used for automatic generation of GUI node
|
||||
public: |
||||
//constructor
|
||||
AudioLMSDenoiseNotch_F32(void) : AudioStream_F32(1, inputQueueArray_f32) {}; |
||||
AudioLMSDenoiseNotch_F32(const AudioSettings_F32 &settings) : |
||||
AudioStream_F32(1, inputQueueArray_f32) {}; |
||||
|
||||
uint16_t initializeLMS(uint16_t _what, uint16_t _lengthDataF, uint16_t _lengthDataD) |
||||
{ |
||||
what = _what; |
||||
if(what != DENOISE && what != NOTCH) what = DENOISE; |
||||
lengthDataF = powf(2.0f, log2f(_lengthDataF)+0.000001f); //Make sure a power of 2
|
||||
lengthDataF = (lengthDataF>MAX_FIR ? MAX_FIR : lengthDataF); // Limit length
|
||||
kMask = lengthDataF - 1; |
||||
lengthDataD = _lengthDataD; |
||||
lengthDataD = (lengthDataD>MAX_DELAY ? MAX_DELAY : lengthDataD); // Limit length
|
||||
return lengthDataF; |
||||
} |
||||
|
||||
// If setEnable is false the LMS object update() becomes pass-though.
|
||||
void enable(bool setEnable) { |
||||
if(setEnable) doLMS=true; |
||||
else doLMS=false; |
||||
} |
||||
|
||||
void setParameters(float32_t _beta, float32_t _decay) |
||||
{ |
||||
beta = _beta; |
||||
if(beta>=1.0f) beta = 0.999999f; |
||||
if(beta<0.000001) beta = 0.000001f; |
||||
decay = _decay; |
||||
if(decay>=1.0f) decay = 0.999999f; |
||||
if(decay<0.000001) decay = 0.000001f; |
||||
} |
||||
|
||||
virtual void update(void); |
||||
|
||||
private: |
||||
audio_block_f32_t *inputQueueArray_f32[1]; //memory pointer for the input to this module
|
||||
uint16_t what = DENOISE; // DENOISE or NOTCH
|
||||
bool doLMS = false; |
||||
|
||||
float32_t dataD[16]; // Can be made less than 16 by lengthDataD
|
||||
uint16_t kNextD = 0; |
||||
uint16_t kOffsetD = 0; |
||||
uint16_t lengthDataD = 4; // Any value, 2 to MAX_DELAY
|
||||
|
||||
float32_t coeff[128]; |
||||
|
||||
// dataF[] is arranged, by added variables kOffset and
|
||||
// lengthDataF, to be circular. A power-of-2 mask makes it circular.
|
||||
float32_t dataF[128]; // Can be made less than 128 by lengthDataF
|
||||
float32_t dataOutF = 0.0f; |
||||
uint16_t kOffsetF = 0; |
||||
uint16_t lengthDataF = 64; |
||||
uint16_t kMask = 63; |
||||
|
||||
float32_t beta = 0.001; //0.03f;
|
||||
float32_t decay = 0.9952f; |
||||
uint16_t numLeak = 0; |
||||
}; |
||||
#endif |
Loading…
Reference in new issue