diff --git a/output_i2s_f32.cpp b/output_i2s_f32.cpp index b4ac13e..fc87219 100644 --- a/output_i2s_f32.cpp +++ b/output_i2s_f32.cpp @@ -1,6 +1,6 @@ /* * ***** output_i2s_f32.cpp ***** - * + * * Audio Library for Teensy 3.X * Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com * @@ -26,10 +26,10 @@ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ - /* + /* * Extended by Chip Audette, OpenAudio, May 2019 * Converted to F32 and to variable audio block length - * The F32 conversion is under the MIT License. Use at your own risk. + * The F32 conversion is under the MIT License. Use at your own risk. */ // Updated OpenAudio F32 with this version from Chip Audette's Tympan Library Jan 2021 RSL @@ -43,36 +43,36 @@ /* Comment this out //taken from Teensy Audio utility/imxrt_hw.h and imxrt_hw.cpp... #if defined(__IMXRT1062__) - #ifndef imxr_hw_h_ - #define imxr_hw_h_ - #define IMXRT_CACHE_ENABLED 2 // 0=disabled, 1=WT, 2= WB - #include - #include - PROGMEM - void set_audioClock_tympan(int nfact, int32_t nmult, uint32_t ndiv, bool force = false) // sets PLL4 - { - if (!force && (CCM_ANALOG_PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_ENABLE)) return; - CCM_ANALOG_PLL_AUDIO = CCM_ANALOG_PLL_AUDIO_BYPASS | CCM_ANALOG_PLL_AUDIO_ENABLE - | CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2) // 2: 1/4; 1: 1/2; 0: 1/1 - | CCM_ANALOG_PLL_AUDIO_DIV_SELECT(nfact); - CCM_ANALOG_PLL_AUDIO_NUM = nmult & CCM_ANALOG_PLL_AUDIO_NUM_MASK; - CCM_ANALOG_PLL_AUDIO_DENOM = ndiv & CCM_ANALOG_PLL_AUDIO_DENOM_MASK; - - CCM_ANALOG_PLL_AUDIO &= ~CCM_ANALOG_PLL_AUDIO_POWERDOWN;//Switch on PLL - while (!(CCM_ANALOG_PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_LOCK)) {}; //Wait for pll-lock - - const int div_post_pll = 1; // other values: 2,4 - CCM_ANALOG_MISC2 &= ~(CCM_ANALOG_MISC2_DIV_MSB | CCM_ANALOG_MISC2_DIV_LSB); - if(div_post_pll>1) CCM_ANALOG_MISC2 |= CCM_ANALOG_MISC2_DIV_LSB; - if(div_post_pll>3) CCM_ANALOG_MISC2 |= CCM_ANALOG_MISC2_DIV_MSB; - - CCM_ANALOG_PLL_AUDIO &= ~CCM_ANALOG_PLL_AUDIO_BYPASS;//Disable Bypass - } - #endif + #ifndef imxr_hw_h_ + #define imxr_hw_h_ + #define IMXRT_CACHE_ENABLED 2 // 0=disabled, 1=WT, 2= WB + #include + #include + PROGMEM + void set_audioClock_tympan(int nfact, int32_t nmult, uint32_t ndiv, bool force = false) // sets PLL4 + { + if (!force && (CCM_ANALOG_PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_ENABLE)) return; + CCM_ANALOG_PLL_AUDIO = CCM_ANALOG_PLL_AUDIO_BYPASS | CCM_ANALOG_PLL_AUDIO_ENABLE + | CCM_ANALOG_PLL_AUDIO_POST_DIV_SELECT(2) // 2: 1/4; 1: 1/2; 0: 1/1 + | CCM_ANALOG_PLL_AUDIO_DIV_SELECT(nfact); + CCM_ANALOG_PLL_AUDIO_NUM = nmult & CCM_ANALOG_PLL_AUDIO_NUM_MASK; + CCM_ANALOG_PLL_AUDIO_DENOM = ndiv & CCM_ANALOG_PLL_AUDIO_DENOM_MASK; + + CCM_ANALOG_PLL_AUDIO &= ~CCM_ANALOG_PLL_AUDIO_POWERDOWN;//Switch on PLL + while (!(CCM_ANALOG_PLL_AUDIO & CCM_ANALOG_PLL_AUDIO_LOCK)) {}; //Wait for pll-lock + + const int div_post_pll = 1; // other values: 2,4 + CCM_ANALOG_MISC2 &= ~(CCM_ANALOG_MISC2_DIV_MSB | CCM_ANALOG_MISC2_DIV_LSB); + if(div_post_pll>1) CCM_ANALOG_MISC2 |= CCM_ANALOG_MISC2_DIV_LSB; + if(div_post_pll>3) CCM_ANALOG_MISC2 |= CCM_ANALOG_MISC2_DIV_MSB; + + CCM_ANALOG_PLL_AUDIO &= ~CCM_ANALOG_PLL_AUDIO_BYPASS;//Disable Bypass + } + #endif #else - //No IMXRT - #define IMXRT_CACHE_ENABLED 0 -#endif + //No IMXRT + #define IMXRT_CACHE_ENABLED 0 +#endif */ //end of commented block //////////// @@ -87,36 +87,36 @@ // //Finally, here is my own Matlab code for computing the mult and div values...(again, just for Teensy 3.x??) /* - %choose the sample rates that you are hoping to hit - targ_fs_Hz = [2000, 8000, 11025, 16000, 22050, 24000, 32000, 44100, floor(44117.64706) , ... - 48000, 88200, floor(44117.64706 * 2), (37000/256*662), 96000, 176400, floor(44117.64706 * 4), 192000]; - F_PLL = 180e6; %choose the clock rate used for this calculation - PLL_div = 256; - all_n=[];all_d=[]; - for Itarg=1:length(targ_fs_Hz) - if (0) - [best_d,best_n]=rat((F_PLL/PLL_div)/targ_fs_Hz(Itarg)); - else - best_n = 1; best_d = 1; best_err = 1e10; - for n=1:255 - d = [1:4095]; - act_fs_Hz = F_PLL / PLL_div * n ./ d; - [err,I] = min(abs(act_fs_Hz - targ_fs_Hz(Itarg))); - if err < best_err - best_n = n; best_d = d(I); - best_err = err; - end - end - end - all_n(Itarg) = best_n; - all_d(Itarg) = best_d; - disp(['fs = ' num2str(targ_fs_Hz(Itarg)) ', n = ' num2str(best_n) ', d = ' num2str(best_d) ', true = ' num2str(F_PLL/PLL_div * best_n / best_d)]) - end + %choose the sample rates that you are hoping to hit + targ_fs_Hz = [2000, 8000, 11025, 16000, 22050, 24000, 32000, 44100, floor(44117.64706) , ... + 48000, 88200, floor(44117.64706 * 2), (37000/256*662), 96000, 176400, floor(44117.64706 * 4), 192000]; + F_PLL = 180e6; %choose the clock rate used for this calculation + PLL_div = 256; + all_n=[];all_d=[]; + for Itarg=1:length(targ_fs_Hz) + if (0) + [best_d,best_n]=rat((F_PLL/PLL_div)/targ_fs_Hz(Itarg)); + else + best_n = 1; best_d = 1; best_err = 1e10; + for n=1:255 + d = [1:4095]; + act_fs_Hz = F_PLL / PLL_div * n ./ d; + [err,I] = min(abs(act_fs_Hz - targ_fs_Hz(Itarg))); + if err < best_err + best_n = n; best_d = d(I); + best_err = err; + end + end + end + all_n(Itarg) = best_n; + all_d(Itarg) = best_d; + disp(['fs = ' num2str(targ_fs_Hz(Itarg)) ', n = ' num2str(best_n) ', d = ' num2str(best_d) ', true = ' num2str(F_PLL/PLL_div * best_n / best_d)]) + end */ -float AudioOutputI2S_F32::setI2SFreq_T3(const float freq_Hz) { +float AudioOutputI2S_F32::setI2SFreq_T3(const float freq_Hz) { #if defined(KINETISK) //for Teensy 3.x only! - int freq = (int)(freq_Hz+0.5); + int freq = (int)(freq_Hz+0.5); typedef struct { uint8_t mult; uint16_t div; @@ -148,13 +148,13 @@ float AudioOutputI2S_F32::setI2SFreq_T3(const float freq_Hz) { for (int f = 0; f < numfreqs; f++) { if ( freq == samplefreqs[f] ) { while (I2S0_MCR & I2S_MCR_DUF) ; - I2S0_MDR = I2S_MDR_FRACT((clkArr[f].mult - 1)) | I2S_MDR_DIVIDE((clkArr[f].div - 1)); - return (float)(F_PLL / 256 * clkArr[f].mult / clkArr[f].div); + I2S0_MDR = I2S_MDR_FRACT((clkArr[f].mult - 1)) | I2S_MDR_DIVIDE((clkArr[f].div - 1)); + return (float)(F_PLL / 256 * clkArr[f].mult / clkArr[f].div); } } #endif return 0.0f; -} +} audio_block_f32_t * AudioOutputI2S_F32::block_left_1st = NULL; audio_block_f32_t * AudioOutputI2S_F32::block_right_1st = NULL; @@ -182,448 +182,448 @@ int AudioOutputI2S_F32::audio_block_samples = AUDIO_BLOCK_SAMPLES; void AudioOutputI2S_F32::begin(void) { - bool transferUsing32bit = false; - begin(transferUsing32bit); + bool transferUsing32bit = false; + begin(transferUsing32bit); } void AudioOutputI2S_F32::begin(bool transferUsing32bit) { - dma.begin(true); // Allocate the DMA channel first + dma.begin(true); // Allocate the DMA channel first - block_left_1st = NULL; - block_right_1st = NULL; + block_left_1st = NULL; + block_right_1st = NULL; - AudioOutputI2S_F32::config_i2s(transferUsing32bit, sample_rate_Hz); + AudioOutputI2S_F32::config_i2s(transferUsing32bit, sample_rate_Hz); #if defined(KINETISK) - CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0 - - dma.TCD->SADDR = i2s_tx_buffer; - dma.TCD->SOFF = 2; - dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); - dma.TCD->NBYTES_MLNO = 2; - //dma.TCD->SLAST = -sizeof(i2s_tx_buffer);//orig from Teensy Audio Library 2020-10-31 - dma.TCD->SLAST = -I2S_BUFFER_TO_USE_BYTES; - dma.TCD->DADDR = (void *)((uint32_t)&I2S0_TDR0 + 2); - dma.TCD->DOFF = 0; - //dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //orig from Teensy Audio Library 2020-10-31 - dma.TCD->CITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2; - dma.TCD->DLASTSGA = 0; - //dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;//orig from Teensy Audio Library 2020-10-31 - dma.TCD->BITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2; - dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; - dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX); - dma.enable(); //newer location of this line in Teensy Audio library - - I2S0_TCSR = I2S_TCSR_SR; - I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE; - + CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0 + + dma.TCD->SADDR = i2s_tx_buffer; + dma.TCD->SOFF = 2; + dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); + dma.TCD->NBYTES_MLNO = 2; + //dma.TCD->SLAST = -sizeof(i2s_tx_buffer);//orig from Teensy Audio Library 2020-10-31 + dma.TCD->SLAST = -I2S_BUFFER_TO_USE_BYTES; + dma.TCD->DADDR = (void *)((uint32_t)&I2S0_TDR0 + 2); + dma.TCD->DOFF = 0; + //dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //orig from Teensy Audio Library 2020-10-31 + dma.TCD->CITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2; + dma.TCD->DLASTSGA = 0; + //dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;//orig from Teensy Audio Library 2020-10-31 + dma.TCD->BITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2; + dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; + dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX); + dma.enable(); //newer location of this line in Teensy Audio library + + I2S0_TCSR = I2S_TCSR_SR; + I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE; + #elif defined(__IMXRT1062__) - CORE_PIN7_CONFIG = 3; //1:TX_DATA0 - - dma.TCD->SADDR = i2s_tx_buffer; - dma.TCD->SOFF = 2; - dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); - dma.TCD->NBYTES_MLNO = 2; - //dma.TCD->SLAST = -sizeof(i2s_tx_buffer);//orig from Teensy Audio Library 2020-10-31 - dma.TCD->SLAST = -I2S_BUFFER_TO_USE_BYTES; - dma.TCD->DOFF = 0; - //dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //orig from Teensy Audio Library 2020-10-31 - dma.TCD->CITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2; - dma.TCD->DLASTSGA = 0; - //dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;//orig from Teensy Audio Library 2020-10-31 - dma.TCD->BITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2; - dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; - dma.TCD->DADDR = (void *)((uint32_t)&I2S1_TDR0 + 2); - dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI1_TX); - dma.enable(); //newer location of this line in Teensy Audio library - - I2S1_RCSR |= I2S_RCSR_RE | I2S_RCSR_BCE; - I2S1_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE; + CORE_PIN7_CONFIG = 3; //1:TX_DATA0 + + dma.TCD->SADDR = i2s_tx_buffer; + dma.TCD->SOFF = 2; + dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); + dma.TCD->NBYTES_MLNO = 2; + //dma.TCD->SLAST = -sizeof(i2s_tx_buffer);//orig from Teensy Audio Library 2020-10-31 + dma.TCD->SLAST = -I2S_BUFFER_TO_USE_BYTES; + dma.TCD->DOFF = 0; + //dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //orig from Teensy Audio Library 2020-10-31 + dma.TCD->CITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2; + dma.TCD->DLASTSGA = 0; + //dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2;//orig from Teensy Audio Library 2020-10-31 + dma.TCD->BITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2; + dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; + dma.TCD->DADDR = (void *)((uint32_t)&I2S1_TDR0 + 2); + dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI1_TX); + dma.enable(); //newer location of this line in Teensy Audio library + + I2S1_RCSR |= I2S_RCSR_RE | I2S_RCSR_BCE; + I2S1_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE; #endif - update_responsibility = update_setup(); - dma.attachInterrupt(AudioOutputI2S_F32::isr); - //dma.enable(); //original location of this line in older Tympan_Library - - enabled = 1; - - //AudioInputI2S_F32::begin_guts(); + update_responsibility = update_setup(); + dma.attachInterrupt(AudioOutputI2S_F32::isr); + //dma.enable(); //original location of this line in older Tympan_Library + + enabled = 1; + + //AudioInputI2S_F32::begin_guts(); } void AudioOutputI2S_F32::isr(void) { #if defined(KINETISK) || defined(__IMXRT1062__) - int16_t *dest; - audio_block_f32_t *blockL, *blockR; - uint32_t saddr, offsetL, offsetR; - - saddr = (uint32_t)(dma.TCD->SADDR); - dma.clearInterrupt(); - //if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) { //original 16-bit - if (saddr < (uint32_t)i2s_tx_buffer + I2S_BUFFER_TO_USE_BYTES / 2) { //are we transmitting the first half or second half of the buffer? - // DMA is transmitting the first half of the buffer - // so we must fill the second half - //dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2]; //original Teensy Audio - dest = (int16_t *)&i2s_tx_buffer[audio_block_samples/2]; //this will be diff if we were to do 32-bit samples - if (AudioOutputI2S_F32::update_responsibility) AudioStream_F32::update_all(); - } else { - // DMA is transmitting the second half of the buffer - // so we must fill the first half - dest = (int16_t *)i2s_tx_buffer; - } - - blockL = AudioOutputI2S_F32::block_left_1st; - blockR = AudioOutputI2S_F32::block_right_1st; - offsetL = AudioOutputI2S_F32::block_left_offset; - offsetR = AudioOutputI2S_F32::block_right_offset; - - int16_t *d = dest; - if (blockL && blockR) { - //memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR); - //memcpy_tointerleaveLRwLen(dest, blockL->data + offsetL, blockR->data + offsetR, audio_block_samples/2); - float32_t *pL = blockL->data + offsetL; - float32_t *pR = blockR->data + offsetR; - for (int i=0; i < audio_block_samples/2; i++) { - *d++ = (int16_t) *pL++; - *d++ = (int16_t) *pR++; //interleave - //*d++ = 0; - //*d++ = 0; - } - offsetL += audio_block_samples / 2; - offsetR += audio_block_samples / 2; - } else if (blockL) { - //memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR); - float32_t *pL = blockL->data + offsetL; - for (int i=0; i < audio_block_samples / 2 * 2; i+=2) { *(d+i) = (int16_t) *pL++; } //interleave - offsetL += audio_block_samples / 2; - } else if (blockR) { - float32_t *pR = blockR->data + offsetR; - for (int i=0; i < audio_block_samples /2 * 2; i+=2) { *(d+i) = (int16_t) *pR++; } //interleave - offsetR += audio_block_samples / 2; - } else { - //memset(dest,0,AUDIO_BLOCK_SAMPLES * 2); - memset(dest,0,audio_block_samples * 2); - return; - } - - arm_dcache_flush_delete(dest, sizeof(i2s_tx_buffer) / 2 ); - - //if (offsetL < AUDIO_BLOCK_SAMPLES) { //orig Teensy Audio - if (offsetL < (uint16_t)audio_block_samples) { - AudioOutputI2S_F32::block_left_offset = offsetL; - } else { - AudioOutputI2S_F32::block_left_offset = 0; - AudioStream_F32::release(blockL); - AudioOutputI2S_F32::block_left_1st = AudioOutputI2S_F32::block_left_2nd; - AudioOutputI2S_F32::block_left_2nd = NULL; - } - //if (offsetR < AUDIO_BLOCK_SAMPLES) { //orig Teensy Audio - if (offsetR < (uint16_t)audio_block_samples) { - AudioOutputI2S_F32::block_right_offset = offsetR; - } else { - AudioOutputI2S_F32::block_right_offset = 0; - AudioStream_F32::release(blockR); - AudioOutputI2S_F32::block_right_1st = AudioOutputI2S_F32::block_right_2nd; - AudioOutputI2S_F32::block_right_2nd = NULL; - } + int16_t *dest; + audio_block_f32_t *blockL, *blockR; + uint32_t saddr, offsetL, offsetR; + + saddr = (uint32_t)(dma.TCD->SADDR); + dma.clearInterrupt(); + //if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) { //original 16-bit + if (saddr < (uint32_t)i2s_tx_buffer + I2S_BUFFER_TO_USE_BYTES / 2) { //are we transmitting the first half or second half of the buffer? + // DMA is transmitting the first half of the buffer + // so we must fill the second half + //dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2]; //original Teensy Audio + dest = (int16_t *)&i2s_tx_buffer[audio_block_samples/2]; //this will be diff if we were to do 32-bit samples + if (AudioOutputI2S_F32::update_responsibility) AudioStream_F32::update_all(); + } else { + // DMA is transmitting the second half of the buffer + // so we must fill the first half + dest = (int16_t *)i2s_tx_buffer; + } + + blockL = AudioOutputI2S_F32::block_left_1st; + blockR = AudioOutputI2S_F32::block_right_1st; + offsetL = AudioOutputI2S_F32::block_left_offset; + offsetR = AudioOutputI2S_F32::block_right_offset; + + int16_t *d = dest; + if (blockL && blockR) { + //memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR); + //memcpy_tointerleaveLRwLen(dest, blockL->data + offsetL, blockR->data + offsetR, audio_block_samples/2); + float32_t *pL = blockL->data + offsetL; + float32_t *pR = blockR->data + offsetR; + for (int i=0; i < audio_block_samples/2; i++) { + *d++ = (int16_t) *pL++; + *d++ = (int16_t) *pR++; //interleave + //*d++ = 0; + //*d++ = 0; + } + offsetL += audio_block_samples / 2; + offsetR += audio_block_samples / 2; + } else if (blockL) { + //memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR); + float32_t *pL = blockL->data + offsetL; + for (int i=0; i < audio_block_samples / 2 * 2; i+=2) { *(d+i) = (int16_t) *pL++; } //interleave + offsetL += audio_block_samples / 2; + } else if (blockR) { + float32_t *pR = blockR->data + offsetR; + for (int i=0; i < audio_block_samples /2 * 2; i+=2) { *(d+i) = (int16_t) *pR++; } //interleave + offsetR += audio_block_samples / 2; + } else { + //memset(dest,0,AUDIO_BLOCK_SAMPLES * 2); + memset(dest,0,audio_block_samples * 2); + return; + } + + arm_dcache_flush_delete(dest, sizeof(i2s_tx_buffer) / 2 ); + + //if (offsetL < AUDIO_BLOCK_SAMPLES) { //orig Teensy Audio + if (offsetL < (uint16_t)audio_block_samples) { + AudioOutputI2S_F32::block_left_offset = offsetL; + } else { + AudioOutputI2S_F32::block_left_offset = 0; + AudioStream_F32::release(blockL); + AudioOutputI2S_F32::block_left_1st = AudioOutputI2S_F32::block_left_2nd; + AudioOutputI2S_F32::block_left_2nd = NULL; + } + //if (offsetR < AUDIO_BLOCK_SAMPLES) { //orig Teensy Audio + if (offsetR < (uint16_t)audio_block_samples) { + AudioOutputI2S_F32::block_right_offset = offsetR; + } else { + AudioOutputI2S_F32::block_right_offset = 0; + AudioStream_F32::release(blockR); + AudioOutputI2S_F32::block_right_1st = AudioOutputI2S_F32::block_right_2nd; + AudioOutputI2S_F32::block_right_2nd = NULL; + } #endif } /* void AudioOutputI2S_F32::begin(bool transferUsing32bit) { - dma.begin(true); // Allocate the DMA channel first - block_left_1st = NULL; - block_right_1st = NULL; - // TODO: should we set & clear the I2S_TCSR_SR bit here? - config_i2s(transferUsing32bit); - CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0 - //setup DMA parameters - //if (transferUsing32bit) { - sub_begin_i32(); - //} else { - // sub_begin_i16(); - //} - - dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX); - update_responsibility = update_setup(); - dma.enable(); - I2S0_TCSR = I2S_TCSR_SR; - I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE; - dma.attachInterrupt(isr_32); - - // change the I2S frequencies to make the requested sample rate - setI2SFreq(AudioOutputI2S_F32::sample_rate_Hz); - - enabled = 1; - - //AudioInputI2S_F32::begin_guts(); + dma.begin(true); // Allocate the DMA channel first + block_left_1st = NULL; + block_right_1st = NULL; + // TODO: should we set & clear the I2S_TCSR_SR bit here? + config_i2s(transferUsing32bit); + CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0 + //setup DMA parameters + //if (transferUsing32bit) { + sub_begin_i32(); + //} else { + // sub_begin_i16(); + //} + + dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX); + update_responsibility = update_setup(); + dma.enable(); + I2S0_TCSR = I2S_TCSR_SR; + I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE; + dma.attachInterrupt(isr_32); + + // change the I2S frequencies to make the requested sample rate + setI2SFreq(AudioOutputI2S_F32::sample_rate_Hz); + + enabled = 1; + + //AudioInputI2S_F32::begin_guts(); } */ /* void AudioOutputI2S_F32::sub_begin_i16(void) { - dma.TCD->SADDR = i2s_tx_buffer; - dma.TCD->SOFF = 2; - dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); - dma.TCD->NBYTES_MLNO = 2; - //dma.TCD->SLAST = -sizeof(i2s_tx_buffer); //original - dma.TCD->SLAST = -I2S_BUFFER_TO_USE_BYTES; - dma.TCD->DADDR = &I2S0_TDR0; - dma.TCD->DOFF = 0; - //dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //original - dma.TCD->CITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2; - dma.TCD->DLASTSGA = 0; - //dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //original - dma.TCD->BITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2; - dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; + dma.TCD->SADDR = i2s_tx_buffer; + dma.TCD->SOFF = 2; + dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); + dma.TCD->NBYTES_MLNO = 2; + //dma.TCD->SLAST = -sizeof(i2s_tx_buffer); //original + dma.TCD->SLAST = -I2S_BUFFER_TO_USE_BYTES; + dma.TCD->DADDR = &I2S0_TDR0; + dma.TCD->DOFF = 0; + //dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //original + dma.TCD->CITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2; + dma.TCD->DLASTSGA = 0; + //dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //original + dma.TCD->BITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 2; + dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; } void AudioOutputI2S_F32::sub_begin_i32(void) { - dma.TCD->SADDR = i2s_tx_buffer; //here's where to get the data from - - //let's assume that we'll transfer each sample (left or right) independently. So 4-byte (32bit) transfers. - dma.TCD->SOFF = 4; //step forward pointer for source data by 4 bytes (ie, 32 bits) after each read - dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(DMA_TCD_ATTR_SIZE_32BIT) | DMA_TCD_ATTR_DSIZE(DMA_TCD_ATTR_SIZE_32BIT); //each read is 32 bits - dma.TCD->NBYTES_MLNO = 4; //how many bytes to send per minor loop. Do each sample (left or right) independently. So, 4 bytes? Should be 4 or 8? - - //dma.TCD->SLAST = -sizeof(i2s_tx_buffer); //original - dma.TCD->SLAST = -I2S_BUFFER_TO_USE_BYTES; //jump back to beginning of source data when hit the end - dma.TCD->DADDR = &I2S0_TDR0; //destination of DMA transfers - dma.TCD->DOFF = 0; //do not increment the destination pointer - //dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //original - dma.TCD->CITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 4; //number of minor loops in a major loop. I2S_BUFFER_TO_USE_BYTES/NBYTES_MLNO? Should be 4 or 8? - dma.TCD->DLASTSGA = 0; - //dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //original - dma.TCD->BITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 4; //number of minor loops in a major loop. I2S_BUFFER_TO_USE_BYTES/NBYTES_MLNO? should be 4 or 8? - dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; + dma.TCD->SADDR = i2s_tx_buffer; //here's where to get the data from + + //let's assume that we'll transfer each sample (left or right) independently. So 4-byte (32bit) transfers. + dma.TCD->SOFF = 4; //step forward pointer for source data by 4 bytes (ie, 32 bits) after each read + dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(DMA_TCD_ATTR_SIZE_32BIT) | DMA_TCD_ATTR_DSIZE(DMA_TCD_ATTR_SIZE_32BIT); //each read is 32 bits + dma.TCD->NBYTES_MLNO = 4; //how many bytes to send per minor loop. Do each sample (left or right) independently. So, 4 bytes? Should be 4 or 8? + + //dma.TCD->SLAST = -sizeof(i2s_tx_buffer); //original + dma.TCD->SLAST = -I2S_BUFFER_TO_USE_BYTES; //jump back to beginning of source data when hit the end + dma.TCD->DADDR = &I2S0_TDR0; //destination of DMA transfers + dma.TCD->DOFF = 0; //do not increment the destination pointer + //dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //original + dma.TCD->CITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 4; //number of minor loops in a major loop. I2S_BUFFER_TO_USE_BYTES/NBYTES_MLNO? Should be 4 or 8? + dma.TCD->DLASTSGA = 0; + //dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; //original + dma.TCD->BITER_ELINKNO = I2S_BUFFER_TO_USE_BYTES / 4; //number of minor loops in a major loop. I2S_BUFFER_TO_USE_BYTES/NBYTES_MLNO? should be 4 or 8? + dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; } */ /* void AudioOutputI2S_F32::isr_16(void) { #if defined(KINETISK) - int16_t *dest; - audio_block_t *blockL, *blockR; - uint32_t saddr, offsetL, offsetR; - saddr = (uint32_t)(dma.TCD->SADDR); - dma.clearInterrupt(); - //if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) { //original - if (saddr < (uint32_t)i2s_tx_buffer + I2S_BUFFER_TO_USE_BYTES / 2) { - // DMA is transmitting the first half of the buffer - // so we must fill the second half - //dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2]; //original - dest = (int16_t *)&i2s_tx_buffer[audio_block_samples/2]; - if (AudioOutputI2S_F32::update_responsibility) AudioStream_F32::update_all(); - } else { - // DMA is transmitting the second half of the buffer - // so we must fill the first half - dest = (int16_t *)i2s_tx_buffer; - } - blockL = AudioOutputI2S_F32::block_left_1st; - blockR = AudioOutputI2S_F32::block_right_1st; - offsetL = AudioOutputI2S_F32::block_left_offset; - offsetR = AudioOutputI2S_F32::block_right_offset; - - int16_t *d = dest; - if (blockL && blockR) { - //memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR); - //memcpy_tointerleaveLRwLen(dest, blockL->data + offsetL, blockR->data + offsetR, audio_block_samples/2); - int16_t *pL = blockL->data + offsetL; - int16_t *pR = blockR->data + offsetR; - for (int i=0; i < audio_block_samples/2; i++) { *d++ = *pL++; *d++ = *pR++; } //interleave - offsetL += audio_block_samples / 2; - offsetR += audio_block_samples / 2; - } else if (blockL) { - //memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR); - int16_t *pL = blockL->data + offsetL; - for (int i=0; i < audio_block_samples / 2 * 2; i+=2) { *(d+i) = *pL++; } //interleave - offsetL += audio_block_samples / 2; - } else if (blockR) { - int16_t *pR = blockR->data + offsetR; - for (int i=0; i < audio_block_samples /2 * 2; i+=2) { *(d+i) = *pR++; } //interleave - offsetR += audio_block_samples / 2; - } else { - //memset(dest,0,AUDIO_BLOCK_SAMPLES * 2); - memset(dest,0,audio_block_samples * 2); - return; - } - //if (offsetL < AUDIO_BLOCK_SAMPLES) { //original - if (offsetL < (uint16_t)audio_block_samples) { - AudioOutputI2S_F32::block_left_offset = offsetL; - } else { - AudioOutputI2S_F32::block_left_offset = 0; - AudioStream::release(blockL); - AudioOutputI2S_F32::block_left_1st = AudioOutputI2S_F32::block_left_2nd; - AudioOutputI2S_F32::block_left_2nd = NULL; - } - //if (offsetR < AUDIO_BLOCK_SAMPLES) { - if (offsetR < (uint16_t)audio_block_samples) { - AudioOutputI2S_F32::block_right_offset = offsetR; - } else { - AudioOutputI2S_F32::block_right_offset = 0; - AudioStream::release(blockR); - AudioOutputI2S_F32::block_right_1st = AudioOutputI2S_F32::block_right_2nd; - AudioOutputI2S_F32::block_right_2nd = NULL; - } + int16_t *dest; + audio_block_t *blockL, *blockR; + uint32_t saddr, offsetL, offsetR; + saddr = (uint32_t)(dma.TCD->SADDR); + dma.clearInterrupt(); + //if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) { //original + if (saddr < (uint32_t)i2s_tx_buffer + I2S_BUFFER_TO_USE_BYTES / 2) { + // DMA is transmitting the first half of the buffer + // so we must fill the second half + //dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2]; //original + dest = (int16_t *)&i2s_tx_buffer[audio_block_samples/2]; + if (AudioOutputI2S_F32::update_responsibility) AudioStream_F32::update_all(); + } else { + // DMA is transmitting the second half of the buffer + // so we must fill the first half + dest = (int16_t *)i2s_tx_buffer; + } + blockL = AudioOutputI2S_F32::block_left_1st; + blockR = AudioOutputI2S_F32::block_right_1st; + offsetL = AudioOutputI2S_F32::block_left_offset; + offsetR = AudioOutputI2S_F32::block_right_offset; + + int16_t *d = dest; + if (blockL && blockR) { + //memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR); + //memcpy_tointerleaveLRwLen(dest, blockL->data + offsetL, blockR->data + offsetR, audio_block_samples/2); + int16_t *pL = blockL->data + offsetL; + int16_t *pR = blockR->data + offsetR; + for (int i=0; i < audio_block_samples/2; i++) { *d++ = *pL++; *d++ = *pR++; } //interleave + offsetL += audio_block_samples / 2; + offsetR += audio_block_samples / 2; + } else if (blockL) { + //memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR); + int16_t *pL = blockL->data + offsetL; + for (int i=0; i < audio_block_samples / 2 * 2; i+=2) { *(d+i) = *pL++; } //interleave + offsetL += audio_block_samples / 2; + } else if (blockR) { + int16_t *pR = blockR->data + offsetR; + for (int i=0; i < audio_block_samples /2 * 2; i+=2) { *(d+i) = *pR++; } //interleave + offsetR += audio_block_samples / 2; + } else { + //memset(dest,0,AUDIO_BLOCK_SAMPLES * 2); + memset(dest,0,audio_block_samples * 2); + return; + } + //if (offsetL < AUDIO_BLOCK_SAMPLES) { //original + if (offsetL < (uint16_t)audio_block_samples) { + AudioOutputI2S_F32::block_left_offset = offsetL; + } else { + AudioOutputI2S_F32::block_left_offset = 0; + AudioStream::release(blockL); + AudioOutputI2S_F32::block_left_1st = AudioOutputI2S_F32::block_left_2nd; + AudioOutputI2S_F32::block_left_2nd = NULL; + } + //if (offsetR < AUDIO_BLOCK_SAMPLES) { + if (offsetR < (uint16_t)audio_block_samples) { + AudioOutputI2S_F32::block_right_offset = offsetR; + } else { + AudioOutputI2S_F32::block_right_offset = 0; + AudioStream::release(blockR); + AudioOutputI2S_F32::block_right_1st = AudioOutputI2S_F32::block_right_2nd; + AudioOutputI2S_F32::block_right_2nd = NULL; + } #else - const int16_t *src, *end; - int16_t *dest; - audio_block_t *block; - uint32_t saddr, offset; - saddr = (uint32_t)(dma.CFG->SAR); - dma.clearInterrupt(); - if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) { - // DMA is transmitting the first half of the buffer - // so we must fill the second half - dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2]; - end = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES]; - if (AudioOutputI2S_F32::update_responsibility) AudioStream_F32::update_all(); - } else { - // DMA is transmitting the second half of the buffer - // so we must fill the first half - dest = (int16_t *)i2s_tx_buffer; - end = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2]; - } - block = AudioOutputI2S_F32::block_left_1st; - if (block) { - offset = AudioOutputI2S_F32::block_left_offset; - src = &block->data[offset]; - do { - *dest = *src++; - dest += 2; - } while (dest < end); - offset += AUDIO_BLOCK_SAMPLES/2; - if (offset < AUDIO_BLOCK_SAMPLES) { - AudioOutputI2S_F32::block_left_offset = offset; - } else { - AudioOutputI2S_F32::block_left_offset = 0; - AudioStream::release(block); - AudioOutputI2S_F32::block_left_1st = AudioOutputI2S_F32::block_left_2nd; - AudioOutputI2S_F32::block_left_2nd = NULL; - } - } else { - do { - *dest = 0; - dest += 2; - } while (dest < end); - } - dest -= AUDIO_BLOCK_SAMPLES - 1; - block = AudioOutputI2S_F32::block_right_1st; - if (block) { - offset = AudioOutputI2S_F32::block_right_offset; - src = &block->data[offset]; - do { - *dest = *src++; - dest += 2; - } while (dest < end); - offset += AUDIO_BLOCK_SAMPLES/2; - if (offset < AUDIO_BLOCK_SAMPLES) { - AudioOutputI2S_F32::block_right_offset = offset; - } else { - AudioOutputI2S_F32::block_right_offset = 0; - AudioStream::release(block); - AudioOutputI2S_F32::block_right_1st = AudioOutputI2S_F32::block_right_2nd; - AudioOutputI2S_F32::block_right_2nd = NULL; - } - } else { - do { - *dest = 0; - dest += 2; - } while (dest < end); - } + const int16_t *src, *end; + int16_t *dest; + audio_block_t *block; + uint32_t saddr, offset; + saddr = (uint32_t)(dma.CFG->SAR); + dma.clearInterrupt(); + if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) { + // DMA is transmitting the first half of the buffer + // so we must fill the second half + dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2]; + end = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES]; + if (AudioOutputI2S_F32::update_responsibility) AudioStream_F32::update_all(); + } else { + // DMA is transmitting the second half of the buffer + // so we must fill the first half + dest = (int16_t *)i2s_tx_buffer; + end = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2]; + } + block = AudioOutputI2S_F32::block_left_1st; + if (block) { + offset = AudioOutputI2S_F32::block_left_offset; + src = &block->data[offset]; + do { + *dest = *src++; + dest += 2; + } while (dest < end); + offset += AUDIO_BLOCK_SAMPLES/2; + if (offset < AUDIO_BLOCK_SAMPLES) { + AudioOutputI2S_F32::block_left_offset = offset; + } else { + AudioOutputI2S_F32::block_left_offset = 0; + AudioStream::release(block); + AudioOutputI2S_F32::block_left_1st = AudioOutputI2S_F32::block_left_2nd; + AudioOutputI2S_F32::block_left_2nd = NULL; + } + } else { + do { + *dest = 0; + dest += 2; + } while (dest < end); + } + dest -= AUDIO_BLOCK_SAMPLES - 1; + block = AudioOutputI2S_F32::block_right_1st; + if (block) { + offset = AudioOutputI2S_F32::block_right_offset; + src = &block->data[offset]; + do { + *dest = *src++; + dest += 2; + } while (dest < end); + offset += AUDIO_BLOCK_SAMPLES/2; + if (offset < AUDIO_BLOCK_SAMPLES) { + AudioOutputI2S_F32::block_right_offset = offset; + } else { + AudioOutputI2S_F32::block_right_offset = 0; + AudioStream::release(block); + AudioOutputI2S_F32::block_right_1st = AudioOutputI2S_F32::block_right_2nd; + AudioOutputI2S_F32::block_right_2nd = NULL; + } + } else { + do { + *dest = 0; + dest += 2; + } while (dest < end); + } #endif } */ /* void AudioOutputI2S_F32::isr_32(void) //should be called every half of an audio block { - int32_t *dest; //int32 is the data type being sent to the audio codec - audio_block_f32_t *blockL, *blockR; - uint32_t saddr; - uint32_t offsetL, offsetR; - - saddr = (uint32_t)(dma.TCD->SADDR); - dma.clearInterrupt(); - //if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) { //original 16-bit - if (saddr < (uint32_t)i2s_tx_buffer + I2S_BUFFER_TO_USE_BYTES / 2) { //are we transmitting the first half or second half of the buffer? - // DMA is transmitting the first half of the buffer - // so we must fill the second half - //dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2]; //original, half-way through buffer (buffer is 32-bit elements filled with 16-bit stereo samples) - dest = (int32_t *)&i2s_tx_buffer[2*(audio_block_samples/2)]; //half-way through the buffer..remember, buffer is 32-bit elements filled with 32-bit stereo samples) - if (AudioOutputI2S_F32::update_responsibility) AudioStream_F32::update_all(); - } else { - // DMA is transmitting the second half of the buffer so we must fill the first half - dest = (int32_t *)i2s_tx_buffer; //beginning of the buffer - } - blockL = AudioOutputI2S_F32::block_left_1st; - blockR = AudioOutputI2S_F32::block_right_1st; - offsetL = AudioOutputI2S_F32::block_left_offset; - offsetR = AudioOutputI2S_F32::block_right_offset; - - int32_t *d = dest; - if (blockL && blockR) { - //memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR); - //memcpy_tointerleaveLRwLen(dest, blockL->data + offsetL, blockR->data + offsetR, audio_block_samples/2); - float32_t *pL = blockL->data + offsetL; - float32_t *pR = blockR->data + offsetR; - for (int i=0; i < audio_block_samples/2; i++) { //loop over half of the audio block (this routine gets called every half an audio block) - *d++ = (int32_t) (*pL++); - *d++ = (int32_t) (*pR++); //cast and interleave - } - offsetL += (audio_block_samples / 2); - offsetR += (audio_block_samples / 2); - } else if (blockL) { - //memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR); - float32_t *pL = blockL->data + offsetL; - for (int i=0; i < audio_block_samples /2; i++) { - *d++ = (int32_t) *pL++; //cast and interleave - *d++ = 0; - } - offsetL += (audio_block_samples / 2); - } else if (blockR) { - float32_t *pR = blockR->data + offsetR; - for (int i=0; i < audio_block_samples /2; i++) { - *d++ = 0; - *d++ = (int32_t) *pR++; //cast and interleave - } - offsetR += (audio_block_samples / 2); - } else { - //memset(dest,0,AUDIO_BLOCK_SAMPLES * 2); //half buffer (AUDIO_BLOCK_SAMPLES/2), 16-bits per sample (AUDIO_BLOCK_SAMPLES/2*2), stereo (AUDIO_BLOCK_SAMPLES/2*2*2) - //memset(dest,0,audio_block_samples * 2 * 4 / 2);//half buffer (AUDIO_BLOCK_SAMPLES/2), 32-bits per sample (AUDIO_BLOCK_SAMPLES/2*4), stereo (AUDIO_BLOCK_SAMPLES/2*4*2) - for (int i=0; i < audio_block_samples/2; i++) { //loop over half of the audio block (this routine gets called every half an audio block) - *d++ = (int32_t) 0; - *d++ = (int32_t) 0; - } - return; - } - //if (offsetL < AUDIO_BLOCK_SAMPLES) { //original - if (offsetL < (uint16_t)audio_block_samples) { - AudioOutputI2S_F32::block_left_offset = offsetL; - } else { - AudioOutputI2S_F32::block_left_offset = 0; - AudioStream_F32::release(blockL); - AudioOutputI2S_F32::block_left_1st = AudioOutputI2S_F32::block_left_2nd; - AudioOutputI2S_F32::block_left_2nd = NULL; - } - //if (offsetR < AUDIO_BLOCK_SAMPLES) { - if (offsetR < (uint16_t)audio_block_samples) { - AudioOutputI2S_F32::block_right_offset = offsetR; - } else { - AudioOutputI2S_F32::block_right_offset = 0; - AudioStream_F32::release(blockR); - AudioOutputI2S_F32::block_right_1st = AudioOutputI2S_F32::block_right_2nd; - AudioOutputI2S_F32::block_right_2nd = NULL; - } + int32_t *dest; //int32 is the data type being sent to the audio codec + audio_block_f32_t *blockL, *blockR; + uint32_t saddr; + uint32_t offsetL, offsetR; + + saddr = (uint32_t)(dma.TCD->SADDR); + dma.clearInterrupt(); + //if (saddr < (uint32_t)i2s_tx_buffer + sizeof(i2s_tx_buffer) / 2) { //original 16-bit + if (saddr < (uint32_t)i2s_tx_buffer + I2S_BUFFER_TO_USE_BYTES / 2) { //are we transmitting the first half or second half of the buffer? + // DMA is transmitting the first half of the buffer + // so we must fill the second half + //dest = (int16_t *)&i2s_tx_buffer[AUDIO_BLOCK_SAMPLES/2]; //original, half-way through buffer (buffer is 32-bit elements filled with 16-bit stereo samples) + dest = (int32_t *)&i2s_tx_buffer[2*(audio_block_samples/2)]; //half-way through the buffer..remember, buffer is 32-bit elements filled with 32-bit stereo samples) + if (AudioOutputI2S_F32::update_responsibility) AudioStream_F32::update_all(); + } else { + // DMA is transmitting the second half of the buffer so we must fill the first half + dest = (int32_t *)i2s_tx_buffer; //beginning of the buffer + } + blockL = AudioOutputI2S_F32::block_left_1st; + blockR = AudioOutputI2S_F32::block_right_1st; + offsetL = AudioOutputI2S_F32::block_left_offset; + offsetR = AudioOutputI2S_F32::block_right_offset; + + int32_t *d = dest; + if (blockL && blockR) { + //memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR); + //memcpy_tointerleaveLRwLen(dest, blockL->data + offsetL, blockR->data + offsetR, audio_block_samples/2); + float32_t *pL = blockL->data + offsetL; + float32_t *pR = blockR->data + offsetR; + for (int i=0; i < audio_block_samples/2; i++) { //loop over half of the audio block (this routine gets called every half an audio block) + *d++ = (int32_t) (*pL++); + *d++ = (int32_t) (*pR++); //cast and interleave + } + offsetL += (audio_block_samples / 2); + offsetR += (audio_block_samples / 2); + } else if (blockL) { + //memcpy_tointerleaveLR(dest, blockL->data + offsetL, blockR->data + offsetR); + float32_t *pL = blockL->data + offsetL; + for (int i=0; i < audio_block_samples /2; i++) { + *d++ = (int32_t) *pL++; //cast and interleave + *d++ = 0; + } + offsetL += (audio_block_samples / 2); + } else if (blockR) { + float32_t *pR = blockR->data + offsetR; + for (int i=0; i < audio_block_samples /2; i++) { + *d++ = 0; + *d++ = (int32_t) *pR++; //cast and interleave + } + offsetR += (audio_block_samples / 2); + } else { + //memset(dest,0,AUDIO_BLOCK_SAMPLES * 2); //half buffer (AUDIO_BLOCK_SAMPLES/2), 16-bits per sample (AUDIO_BLOCK_SAMPLES/2*2), stereo (AUDIO_BLOCK_SAMPLES/2*2*2) + //memset(dest,0,audio_block_samples * 2 * 4 / 2);//half buffer (AUDIO_BLOCK_SAMPLES/2), 32-bits per sample (AUDIO_BLOCK_SAMPLES/2*4), stereo (AUDIO_BLOCK_SAMPLES/2*4*2) + for (int i=0; i < audio_block_samples/2; i++) { //loop over half of the audio block (this routine gets called every half an audio block) + *d++ = (int32_t) 0; + *d++ = (int32_t) 0; + } + return; + } + //if (offsetL < AUDIO_BLOCK_SAMPLES) { //original + if (offsetL < (uint16_t)audio_block_samples) { + AudioOutputI2S_F32::block_left_offset = offsetL; + } else { + AudioOutputI2S_F32::block_left_offset = 0; + AudioStream_F32::release(blockL); + AudioOutputI2S_F32::block_left_1st = AudioOutputI2S_F32::block_left_2nd; + AudioOutputI2S_F32::block_left_2nd = NULL; + } + //if (offsetR < AUDIO_BLOCK_SAMPLES) { + if (offsetR < (uint16_t)audio_block_samples) { + AudioOutputI2S_F32::block_right_offset = offsetR; + } else { + AudioOutputI2S_F32::block_right_offset = 0; + AudioStream_F32::release(blockR); + AudioOutputI2S_F32::block_right_1st = AudioOutputI2S_F32::block_right_2nd; + AudioOutputI2S_F32::block_right_2nd = NULL; + } } */ #define F32_TO_I16_NORM_FACTOR (32767) //which is 2^15-1 void AudioOutputI2S_F32::scale_f32_to_i16(float32_t *p_f32, float32_t *p_i16, int len) { - for (int i=0; ilength != audio_block_samples) { - Serial.print("AudioOutputI2S_F32: *** WARNING ***: audio_block says len = "); - Serial.print(block_f32->length); - Serial.print(", but I2S settings want it to be = "); - Serial.println(audio_block_samples); - } - //Serial.print("AudioOutputI2S_F32: audio_block_samples = "); - //Serial.println(audio_block_samples); - - //scale F32 to Int32 - //block_f32_scaled = AudioStream_F32::allocate_f32(); - //scale_f32_to_i32(block_f32->data, block_f32_scaled->data, audio_block_samples); - scale_f32_to_i16(block_f32->data, block_f32_scaled->data, audio_block_samples); - - //count++; - //if (count > 100) { - // Serial.print("AudioOutputI2S_F32::update() orig, scaled = "); - // Serial.print(block_f32->data[30]); - // Serial.print(", "); - // Serial.println(block_f32_scaled->data[30]); - // count=0; - //} - - //now process the data blocks - __disable_irq(); - if (block_left_1st == NULL) { - block_left_1st = block_f32_scaled; - block_left_offset = 0; - __enable_irq(); - } else if (block_left_2nd == NULL) { - block_left_2nd = block_f32_scaled; - __enable_irq(); - } else { - audio_block_f32_t *tmp = block_left_1st; - block_left_1st = block_left_2nd; - block_left_2nd = block_f32_scaled; - block_left_offset = 0; - __enable_irq(); - AudioStream_F32::release(tmp); - } - AudioStream_F32::transmit(block_f32,0); AudioStream_F32::release(block_f32); //echo the incoming audio out the outputs - } else { - //this branch should never get called, but if it does, let's release the buffer that was never used - AudioStream_F32::release(block_f32_scaled); - } - - block_f32_scaled = block2_f32_scaled; //this is simply renaming the pre-allocated buffer - block_f32 = receiveReadOnly_f32(1); // input 1 = right channel - if (block_f32) { - //scale F32 to Int32 - //block_f32_scaled = AudioStream_F32::allocate_f32(); - //scale_f32_to_i32(block_f32->data, block_f32_scaled->data, audio_block_samples); - scale_f32_to_i16(block_f32->data, block_f32_scaled->data, audio_block_samples); - - __disable_irq(); - if (block_right_1st == NULL) { - block_right_1st = block_f32_scaled; - block_right_offset = 0; - __enable_irq(); - } else if (block_right_2nd == NULL) { - block_right_2nd = block_f32_scaled; - __enable_irq(); - } else { - audio_block_f32_t *tmp = block_right_1st; - block_right_1st = block_right_2nd; - block_right_2nd = block_f32_scaled; - block_right_offset = 0; - __enable_irq(); - AudioStream_F32::release(tmp); - } - AudioStream_F32::transmit(block_f32,1); AudioStream_F32::release(block_f32); //echo the incoming audio out the outputs - } else { - //this branch should never get called, but if it does, let's release the buffer that was never used - AudioStream_F32::release(block_f32_scaled); - } + // null audio device: discard all incoming data + //if (!active) return; + //audio_block_t *block = receiveReadOnly(); + //if (block) release(block); + + audio_block_f32_t *block_f32; + audio_block_f32_t *block_f32_scaled = AudioStream_F32::allocate_f32(); + audio_block_f32_t *block2_f32_scaled = AudioStream_F32::allocate_f32(); + if ((!block_f32_scaled) || (!block2_f32_scaled)) { + //couldn't get some working memory. Return. + if (block_f32_scaled) AudioStream_F32::release(block_f32_scaled); + if (block2_f32_scaled) AudioStream_F32::release(block2_f32_scaled); + return; + } + + //now that we have our working memory, proceed with getting the audio data and processing + block_f32 = receiveReadOnly_f32(0); // input 0 = left channel + if (block_f32) { + if (block_f32->length != audio_block_samples) { + Serial.print("AudioOutputI2S_F32: *** WARNING ***: audio_block says len = "); + Serial.print(block_f32->length); + Serial.print(", but I2S settings want it to be = "); + Serial.println(audio_block_samples); + } + //Serial.print("AudioOutputI2S_F32: audio_block_samples = "); + //Serial.println(audio_block_samples); + + // Optional scaling for easy volume control. Leave outputScale==1.0f for default + if(outputScale<1.0f || outputScale>1.0f) + arm_scale_f32 (block_f32->data, outputScale, block_f32->data, block_f32->length); + + //scale F32 to Int32 + //block_f32_scaled = AudioStream_F32::allocate_f32(); + //scale_f32_to_i32(block_f32->data, block_f32_scaled->data, audio_block_samples); + scale_f32_to_i16(block_f32->data, block_f32_scaled->data, audio_block_samples); + + //count++; + //if (count > 100) { + // Serial.print("AudioOutputI2S_F32::update() orig, scaled = "); + // Serial.print(block_f32->data[30]); + // Serial.print(", "); + // Serial.println(block_f32_scaled->data[30]); + // count=0; + //} + + //now process the data blocks + __disable_irq(); + if (block_left_1st == NULL) { + block_left_1st = block_f32_scaled; + block_left_offset = 0; + __enable_irq(); + } else if (block_left_2nd == NULL) { + block_left_2nd = block_f32_scaled; + __enable_irq(); + } else { + audio_block_f32_t *tmp = block_left_1st; + block_left_1st = block_left_2nd; + block_left_2nd = block_f32_scaled; + block_left_offset = 0; + __enable_irq(); + AudioStream_F32::release(tmp); + } + AudioStream_F32::transmit(block_f32,0); AudioStream_F32::release(block_f32); //echo the incoming audio out the outputs + } else { + //this branch should never get called, but if it does, let's release the buffer that was never used + AudioStream_F32::release(block_f32_scaled); + } + + block_f32_scaled = block2_f32_scaled; //this is simply renaming the pre-allocated buffer + + block_f32 = receiveReadOnly_f32(1); // input 1 = right channel + if (block_f32) { + // Optional scaling for easy volume control. Leave outputScale==1.0f for default + if(outputScale<1.0f || outputScale>1.0f) + arm_scale_f32 (block_f32->data, outputScale, block_f32->data, block_f32->length); + + //scale F32 to Int32 + //block_f32_scaled = AudioStream_F32::allocate_f32(); + //scale_f32_to_i32(block_f32->data, block_f32_scaled->data, audio_block_samples); + scale_f32_to_i16(block_f32->data, block_f32_scaled->data, audio_block_samples); + + __disable_irq(); + if (block_right_1st == NULL) { + block_right_1st = block_f32_scaled; + block_right_offset = 0; + __enable_irq(); + } else if (block_right_2nd == NULL) { + block_right_2nd = block_f32_scaled; + __enable_irq(); + } else { + audio_block_f32_t *tmp = block_right_1st; + block_right_1st = block_right_2nd; + block_right_2nd = block_f32_scaled; + block_right_offset = 0; + __enable_irq(); + AudioStream_F32::release(tmp); + } + AudioStream_F32::transmit(block_f32,1); AudioStream_F32::release(block_f32); //echo the incoming audio out the outputs + } else { + //this branch should never get called, but if it does, let's release the buffer that was never used + AudioStream_F32::release(block_f32_scaled); + } } #if defined(KINETISK) || defined(KINETISL) @@ -776,112 +785,112 @@ void AudioOutputI2S_F32::update(void) #endif #endif -void AudioOutputI2S_F32::config_i2s(void) { config_i2s(false, AudioOutputI2S_F32::sample_rate_Hz); } -void AudioOutputI2S_F32::config_i2s(bool transferUsing32bit) { config_i2s(transferUsing32bit, AudioOutputI2S_F32::sample_rate_Hz); } +void AudioOutputI2S_F32::config_i2s(void) { config_i2s(false, AudioOutputI2S_F32::sample_rate_Hz); } +void AudioOutputI2S_F32::config_i2s(bool transferUsing32bit) { config_i2s(transferUsing32bit, AudioOutputI2S_F32::sample_rate_Hz); } void AudioOutputI2S_F32::config_i2s(float fs_Hz) { config_i2s(false, fs_Hz); } void AudioOutputI2S_F32::config_i2s(bool transferUsing32bit, float fs_Hz) { #if defined(KINETISK) || defined(KINETISL) - SIM_SCGC6 |= SIM_SCGC6_I2S; - SIM_SCGC7 |= SIM_SCGC7_DMA; - SIM_SCGC6 |= SIM_SCGC6_DMAMUX; - - // if either transmitter or receiver is enabled, do nothing - if (I2S0_TCSR & I2S_TCSR_TE) return; - if (I2S0_RCSR & I2S_RCSR_RE) return; - - // enable MCLK output - I2S0_MCR = I2S_MCR_MICS(MCLK_SRC) | I2S_MCR_MOE; - while (I2S0_MCR & I2S_MCR_DUF) ; - I2S0_MDR = I2S_MDR_FRACT((MCLK_MULT-1)) | I2S_MDR_DIVIDE((MCLK_DIV-1)); - - // configure transmitter - I2S0_TMR = 0; - I2S0_TCR1 = I2S_TCR1_TFW(1); // watermark at half fifo size - I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_BCP | I2S_TCR2_MSEL(1) - | I2S_TCR2_BCD | I2S_TCR2_DIV(1); - I2S0_TCR3 = I2S_TCR3_TCE; - I2S0_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(31) | I2S_TCR4_MF - | I2S_TCR4_FSE | I2S_TCR4_FSP | I2S_TCR4_FSD; - I2S0_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31); - - // configure receiver (sync'd to transmitter clocks) - I2S0_RMR = 0; - I2S0_RCR1 = I2S_RCR1_RFW(1); - I2S0_RCR2 = I2S_RCR2_SYNC(1) | I2S_TCR2_BCP | I2S_RCR2_MSEL(1) - | I2S_RCR2_BCD | I2S_RCR2_DIV(1); - I2S0_RCR3 = I2S_RCR3_RCE; - I2S0_RCR4 = I2S_RCR4_FRSZ(1) | I2S_RCR4_SYWD(31) | I2S_RCR4_MF - | I2S_RCR4_FSE | I2S_RCR4_FSP | I2S_RCR4_FSD; - I2S0_RCR5 = I2S_RCR5_WNW(31) | I2S_RCR5_W0W(31) | I2S_RCR5_FBT(31); - - // configure pin mux for 3 clock signals - CORE_PIN23_CONFIG = PORT_PCR_MUX(6); // pin 23, PTC2, I2S0_TX_FS (LRCLK) - CORE_PIN9_CONFIG = PORT_PCR_MUX(6); // pin 9, PTC3, I2S0_TX_BCLK - CORE_PIN11_CONFIG = PORT_PCR_MUX(6); // pin 11, PTC6, I2S0_MCLK - - // change the I2S frequencies to make the requested sample rate - setI2SFreq_T3(fs_Hz); //for T3.x only! + SIM_SCGC6 |= SIM_SCGC6_I2S; + SIM_SCGC7 |= SIM_SCGC7_DMA; + SIM_SCGC6 |= SIM_SCGC6_DMAMUX; + + // if either transmitter or receiver is enabled, do nothing + if (I2S0_TCSR & I2S_TCSR_TE) return; + if (I2S0_RCSR & I2S_RCSR_RE) return; + + // enable MCLK output + I2S0_MCR = I2S_MCR_MICS(MCLK_SRC) | I2S_MCR_MOE; + while (I2S0_MCR & I2S_MCR_DUF) ; + I2S0_MDR = I2S_MDR_FRACT((MCLK_MULT-1)) | I2S_MDR_DIVIDE((MCLK_DIV-1)); + + // configure transmitter + I2S0_TMR = 0; + I2S0_TCR1 = I2S_TCR1_TFW(1); // watermark at half fifo size + I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_BCP | I2S_TCR2_MSEL(1) + | I2S_TCR2_BCD | I2S_TCR2_DIV(1); + I2S0_TCR3 = I2S_TCR3_TCE; + I2S0_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(31) | I2S_TCR4_MF + | I2S_TCR4_FSE | I2S_TCR4_FSP | I2S_TCR4_FSD; + I2S0_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31); + + // configure receiver (sync'd to transmitter clocks) + I2S0_RMR = 0; + I2S0_RCR1 = I2S_RCR1_RFW(1); + I2S0_RCR2 = I2S_RCR2_SYNC(1) | I2S_TCR2_BCP | I2S_RCR2_MSEL(1) + | I2S_RCR2_BCD | I2S_RCR2_DIV(1); + I2S0_RCR3 = I2S_RCR3_RCE; + I2S0_RCR4 = I2S_RCR4_FRSZ(1) | I2S_RCR4_SYWD(31) | I2S_RCR4_MF + | I2S_RCR4_FSE | I2S_RCR4_FSP | I2S_RCR4_FSD; + I2S0_RCR5 = I2S_RCR5_WNW(31) | I2S_RCR5_W0W(31) | I2S_RCR5_FBT(31); + + // configure pin mux for 3 clock signals + CORE_PIN23_CONFIG = PORT_PCR_MUX(6); // pin 23, PTC2, I2S0_TX_FS (LRCLK) + CORE_PIN9_CONFIG = PORT_PCR_MUX(6); // pin 9, PTC3, I2S0_TX_BCLK + CORE_PIN11_CONFIG = PORT_PCR_MUX(6); // pin 11, PTC6, I2S0_MCLK + + // change the I2S frequencies to make the requested sample rate + setI2SFreq_T3(fs_Hz); //for T3.x only! #elif defined(__IMXRT1062__) - CCM_CCGR5 |= CCM_CCGR5_SAI1(CCM_CCGR_ON); + CCM_CCGR5 |= CCM_CCGR5_SAI1(CCM_CCGR_ON); - // if either transmitter or receiver is enabled, do nothing - if (I2S1_TCSR & I2S_TCSR_TE) return; - if (I2S1_RCSR & I2S_RCSR_RE) return; + // if either transmitter or receiver is enabled, do nothing + if (I2S1_TCSR & I2S_TCSR_TE) return; + if (I2S1_RCSR & I2S_RCSR_RE) return; //PLL: - //int fs = AUDIO_SAMPLE_RATE_EXACT; //original from Teensy Audio Library - int fs = fs_Hz; - - // PLL between 27*24 = 648MHz und 54*24=1296MHz - int n1 = 4; //SAI prescaler 4 => (n1*n2) = multiple of 4 - int n2 = 1 + (24000000 * 27) / (fs * 256 * n1); - - double C = ((double)fs * 256 * n1 * n2) / 24000000; - int c0 = C; - int c2 = 10000; - int c1 = C * c2 - (c0 * c2); - set_audioClock(c0, c1, c2); - - // clear SAI1_CLK register locations - CCM_CSCMR1 = (CCM_CSCMR1 & ~(CCM_CSCMR1_SAI1_CLK_SEL_MASK)) - | CCM_CSCMR1_SAI1_CLK_SEL(2); // &0x03 // (0,1,2): PLL3PFD0, PLL5, PLL4 - CCM_CS1CDR = (CCM_CS1CDR & ~(CCM_CS1CDR_SAI1_CLK_PRED_MASK | CCM_CS1CDR_SAI1_CLK_PODF_MASK)) - | CCM_CS1CDR_SAI1_CLK_PRED(n1-1) // &0x07 - | CCM_CS1CDR_SAI1_CLK_PODF(n2-1); // &0x3f - - // Select MCLK - IOMUXC_GPR_GPR1 = (IOMUXC_GPR_GPR1 - & ~(IOMUXC_GPR_GPR1_SAI1_MCLK1_SEL_MASK)) - | (IOMUXC_GPR_GPR1_SAI1_MCLK_DIR | IOMUXC_GPR_GPR1_SAI1_MCLK1_SEL(0)); - - CORE_PIN23_CONFIG = 3; //1:MCLK - CORE_PIN21_CONFIG = 3; //1:RX_BCLK - CORE_PIN20_CONFIG = 3; //1:RX_SYNC - - int rsync = 0; - int tsync = 1; - - I2S1_TMR = 0; - //I2S1_TCSR = (1<<25); //Reset - I2S1_TCR1 = I2S_TCR1_RFW(1); - I2S1_TCR2 = I2S_TCR2_SYNC(tsync) | I2S_TCR2_BCP // sync=0; tx is async; - | (I2S_TCR2_BCD | I2S_TCR2_DIV((1)) | I2S_TCR2_MSEL(1)); - I2S1_TCR3 = I2S_TCR3_TCE; - I2S1_TCR4 = I2S_TCR4_FRSZ((2-1)) | I2S_TCR4_SYWD((32-1)) | I2S_TCR4_MF - | I2S_TCR4_FSD | I2S_TCR4_FSE | I2S_TCR4_FSP; - I2S1_TCR5 = I2S_TCR5_WNW((32-1)) | I2S_TCR5_W0W((32-1)) | I2S_TCR5_FBT((32-1)); - - I2S1_RMR = 0; - //I2S1_RCSR = (1<<25); //Reset - I2S1_RCR1 = I2S_RCR1_RFW(1); - I2S1_RCR2 = I2S_RCR2_SYNC(rsync) | I2S_RCR2_BCP // sync=0; rx is async; - | (I2S_RCR2_BCD | I2S_RCR2_DIV((1)) | I2S_RCR2_MSEL(1)); - I2S1_RCR3 = I2S_RCR3_RCE; - I2S1_RCR4 = I2S_RCR4_FRSZ((2-1)) | I2S_RCR4_SYWD((32-1)) | I2S_RCR4_MF - | I2S_RCR4_FSE | I2S_RCR4_FSP | I2S_RCR4_FSD; - I2S1_RCR5 = I2S_RCR5_WNW((32-1)) | I2S_RCR5_W0W((32-1)) | I2S_RCR5_FBT((32-1)); + //int fs = AUDIO_SAMPLE_RATE_EXACT; //original from Teensy Audio Library + int fs = fs_Hz; + + // PLL between 27*24 = 648MHz und 54*24=1296MHz + int n1 = 4; //SAI prescaler 4 => (n1*n2) = multiple of 4 + int n2 = 1 + (24000000 * 27) / (fs * 256 * n1); + + double C = ((double)fs * 256 * n1 * n2) / 24000000; + int c0 = C; + int c2 = 10000; + int c1 = C * c2 - (c0 * c2); + set_audioClock(c0, c1, c2); + + // clear SAI1_CLK register locations + CCM_CSCMR1 = (CCM_CSCMR1 & ~(CCM_CSCMR1_SAI1_CLK_SEL_MASK)) + | CCM_CSCMR1_SAI1_CLK_SEL(2); // &0x03 // (0,1,2): PLL3PFD0, PLL5, PLL4 + CCM_CS1CDR = (CCM_CS1CDR & ~(CCM_CS1CDR_SAI1_CLK_PRED_MASK | CCM_CS1CDR_SAI1_CLK_PODF_MASK)) + | CCM_CS1CDR_SAI1_CLK_PRED(n1-1) // &0x07 + | CCM_CS1CDR_SAI1_CLK_PODF(n2-1); // &0x3f + + // Select MCLK + IOMUXC_GPR_GPR1 = (IOMUXC_GPR_GPR1 + & ~(IOMUXC_GPR_GPR1_SAI1_MCLK1_SEL_MASK)) + | (IOMUXC_GPR_GPR1_SAI1_MCLK_DIR | IOMUXC_GPR_GPR1_SAI1_MCLK1_SEL(0)); + + CORE_PIN23_CONFIG = 3; //1:MCLK + CORE_PIN21_CONFIG = 3; //1:RX_BCLK + CORE_PIN20_CONFIG = 3; //1:RX_SYNC + + int rsync = 0; + int tsync = 1; + + I2S1_TMR = 0; + //I2S1_TCSR = (1<<25); //Reset + I2S1_TCR1 = I2S_TCR1_RFW(1); + I2S1_TCR2 = I2S_TCR2_SYNC(tsync) | I2S_TCR2_BCP // sync=0; tx is async; + | (I2S_TCR2_BCD | I2S_TCR2_DIV((1)) | I2S_TCR2_MSEL(1)); + I2S1_TCR3 = I2S_TCR3_TCE; + I2S1_TCR4 = I2S_TCR4_FRSZ((2-1)) | I2S_TCR4_SYWD((32-1)) | I2S_TCR4_MF + | I2S_TCR4_FSD | I2S_TCR4_FSE | I2S_TCR4_FSP; + I2S1_TCR5 = I2S_TCR5_WNW((32-1)) | I2S_TCR5_W0W((32-1)) | I2S_TCR5_FBT((32-1)); + + I2S1_RMR = 0; + //I2S1_RCSR = (1<<25); //Reset + I2S1_RCR1 = I2S_RCR1_RFW(1); + I2S1_RCR2 = I2S_RCR2_SYNC(rsync) | I2S_RCR2_BCP // sync=0; rx is async; + | (I2S_RCR2_BCD | I2S_RCR2_DIV((1)) | I2S_RCR2_MSEL(1)); + I2S1_RCR3 = I2S_RCR3_RCE; + I2S1_RCR4 = I2S_RCR4_FRSZ((2-1)) | I2S_RCR4_SYWD((32-1)) | I2S_RCR4_MF + | I2S_RCR4_FSE | I2S_RCR4_FSP | I2S_RCR4_FSD; + I2S1_RCR5 = I2S_RCR5_WNW((32-1)) | I2S_RCR5_W0W((32-1)) | I2S_RCR5_FBT((32-1)); #endif } @@ -890,140 +899,140 @@ void AudioOutputI2S_F32::config_i2s(bool transferUsing32bit, float fs_Hz) // From Chip: The I2SSlave functionality has NOT been extended to allow for different block sizes or sample rates (2020-10-31) -void AudioOutputI2Sslave_F32::begin(void) +void AudioOutputI2Sslave_F32::begin(void) { - dma.begin(true); // Allocate the DMA channel first + dma.begin(true); // Allocate the DMA channel first - //pinMode(2, OUTPUT); - block_left_1st = NULL; - block_right_1st = NULL; + //pinMode(2, OUTPUT); + block_left_1st = NULL; + block_right_1st = NULL; - AudioOutputI2Sslave_F32::config_i2s(); + AudioOutputI2Sslave_F32::config_i2s(); #if defined(KINETISK) - CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0 - dma.TCD->SADDR = i2s_tx_buffer; - dma.TCD->SOFF = 2; - dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); - dma.TCD->NBYTES_MLNO = 2; - dma.TCD->SLAST = -sizeof(i2s_tx_buffer); - dma.TCD->DADDR = (void *)((uint32_t)&I2S0_TDR0 + 2); - dma.TCD->DOFF = 0; - dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; - dma.TCD->DLASTSGA = 0; - dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; - dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; - dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX); - dma.enable(); - - I2S0_TCSR = I2S_TCSR_SR; - I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE; + CORE_PIN22_CONFIG = PORT_PCR_MUX(6); // pin 22, PTC1, I2S0_TXD0 + dma.TCD->SADDR = i2s_tx_buffer; + dma.TCD->SOFF = 2; + dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); + dma.TCD->NBYTES_MLNO = 2; + dma.TCD->SLAST = -sizeof(i2s_tx_buffer); + dma.TCD->DADDR = (void *)((uint32_t)&I2S0_TDR0 + 2); + dma.TCD->DOFF = 0; + dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; + dma.TCD->DLASTSGA = 0; + dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; + dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; + dma.triggerAtHardwareEvent(DMAMUX_SOURCE_I2S0_TX); + dma.enable(); + + I2S0_TCSR = I2S_TCSR_SR; + I2S0_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE; #elif defined(__IMXRT1062__) - CORE_PIN7_CONFIG = 3; //1:TX_DATA0 - dma.TCD->SADDR = i2s_tx_buffer; - dma.TCD->SOFF = 2; - dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); - dma.TCD->NBYTES_MLNO = 2; - dma.TCD->SLAST = -sizeof(i2s_tx_buffer); - //dma.TCD->DADDR = (void *)((uint32_t)&I2S1_TDR1 + 2); - dma.TCD->DOFF = 0; - dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; - dma.TCD->DLASTSGA = 0; - dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; - //dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI2_TX); - dma.TCD->DADDR = (void *)((uint32_t)&I2S1_TDR0 + 2); - dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; - dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI1_TX); - dma.enable(); - - I2S1_RCSR |= I2S_RCSR_RE | I2S_RCSR_BCE; - I2S1_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE; + CORE_PIN7_CONFIG = 3; //1:TX_DATA0 + dma.TCD->SADDR = i2s_tx_buffer; + dma.TCD->SOFF = 2; + dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(1) | DMA_TCD_ATTR_DSIZE(1); + dma.TCD->NBYTES_MLNO = 2; + dma.TCD->SLAST = -sizeof(i2s_tx_buffer); + //dma.TCD->DADDR = (void *)((uint32_t)&I2S1_TDR1 + 2); + dma.TCD->DOFF = 0; + dma.TCD->CITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; + dma.TCD->DLASTSGA = 0; + dma.TCD->BITER_ELINKNO = sizeof(i2s_tx_buffer) / 2; + //dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI2_TX); + dma.TCD->DADDR = (void *)((uint32_t)&I2S1_TDR0 + 2); + dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR; + dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SAI1_TX); + dma.enable(); + + I2S1_RCSR |= I2S_RCSR_RE | I2S_RCSR_BCE; + I2S1_TCSR = I2S_TCSR_TE | I2S_TCSR_BCE | I2S_TCSR_FRDE; #endif - update_responsibility = update_setup(); - //dma.enable(); - dma.attachInterrupt(AudioOutputI2S_F32::isr); + update_responsibility = update_setup(); + //dma.enable(); + dma.attachInterrupt(AudioOutputI2S_F32::isr); } void AudioOutputI2Sslave_F32::config_i2s(void) { #if defined(KINETISK) - SIM_SCGC6 |= SIM_SCGC6_I2S; - SIM_SCGC7 |= SIM_SCGC7_DMA; - SIM_SCGC6 |= SIM_SCGC6_DMAMUX; + SIM_SCGC6 |= SIM_SCGC6_I2S; + SIM_SCGC7 |= SIM_SCGC7_DMA; + SIM_SCGC6 |= SIM_SCGC6_DMAMUX; - // if either transmitter or receiver is enabled, do nothing - if (I2S0_TCSR & I2S_TCSR_TE) return; - if (I2S0_RCSR & I2S_RCSR_RE) return; + // if either transmitter or receiver is enabled, do nothing + if (I2S0_TCSR & I2S_TCSR_TE) return; + if (I2S0_RCSR & I2S_RCSR_RE) return; - // Select input clock 0 - // Configure to input the bit-clock from pin, bypasses the MCLK divider - I2S0_MCR = I2S_MCR_MICS(0); - I2S0_MDR = 0; + // Select input clock 0 + // Configure to input the bit-clock from pin, bypasses the MCLK divider + I2S0_MCR = I2S_MCR_MICS(0); + I2S0_MDR = 0; - // configure transmitter - I2S0_TMR = 0; - I2S0_TCR1 = I2S_TCR1_TFW(1); // watermark at half fifo size - I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_BCP; + // configure transmitter + I2S0_TMR = 0; + I2S0_TCR1 = I2S_TCR1_TFW(1); // watermark at half fifo size + I2S0_TCR2 = I2S_TCR2_SYNC(0) | I2S_TCR2_BCP; - I2S0_TCR3 = I2S_TCR3_TCE; - I2S0_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(31) | I2S_TCR4_MF - | I2S_TCR4_FSE | I2S_TCR4_FSP; + I2S0_TCR3 = I2S_TCR3_TCE; + I2S0_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(31) | I2S_TCR4_MF + | I2S_TCR4_FSE | I2S_TCR4_FSP; - I2S0_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31); + I2S0_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31); - // configure receiver (sync'd to transmitter clocks) - I2S0_RMR = 0; - I2S0_RCR1 = I2S_RCR1_RFW(1); - I2S0_RCR2 = I2S_RCR2_SYNC(1) | I2S_TCR2_BCP; + // configure receiver (sync'd to transmitter clocks) + I2S0_RMR = 0; + I2S0_RCR1 = I2S_RCR1_RFW(1); + I2S0_RCR2 = I2S_RCR2_SYNC(1) | I2S_TCR2_BCP; - I2S0_RCR3 = I2S_RCR3_RCE; - I2S0_RCR4 = I2S_RCR4_FRSZ(1) | I2S_RCR4_SYWD(31) | I2S_RCR4_MF - | I2S_RCR4_FSE | I2S_RCR4_FSP | I2S_RCR4_FSD; + I2S0_RCR3 = I2S_RCR3_RCE; + I2S0_RCR4 = I2S_RCR4_FRSZ(1) | I2S_RCR4_SYWD(31) | I2S_RCR4_MF + | I2S_RCR4_FSE | I2S_RCR4_FSP | I2S_RCR4_FSD; - I2S0_RCR5 = I2S_RCR5_WNW(31) | I2S_RCR5_W0W(31) | I2S_RCR5_FBT(31); + I2S0_RCR5 = I2S_RCR5_WNW(31) | I2S_RCR5_W0W(31) | I2S_RCR5_FBT(31); - // configure pin mux for 3 clock signals - CORE_PIN23_CONFIG = PORT_PCR_MUX(6); // pin 23, PTC2, I2S0_TX_FS (LRCLK) - CORE_PIN9_CONFIG = PORT_PCR_MUX(6); // pin 9, PTC3, I2S0_TX_BCLK - CORE_PIN11_CONFIG = PORT_PCR_MUX(6); // pin 11, PTC6, I2S0_MCLK + // configure pin mux for 3 clock signals + CORE_PIN23_CONFIG = PORT_PCR_MUX(6); // pin 23, PTC2, I2S0_TX_FS (LRCLK) + CORE_PIN9_CONFIG = PORT_PCR_MUX(6); // pin 9, PTC3, I2S0_TX_BCLK + CORE_PIN11_CONFIG = PORT_PCR_MUX(6); // pin 11, PTC6, I2S0_MCLK #elif defined(__IMXRT1062__) - CCM_CCGR5 |= CCM_CCGR5_SAI1(CCM_CCGR_ON); - - // if either transmitter or receiver is enabled, do nothing - if (I2S1_TCSR & I2S_TCSR_TE) return; - if (I2S1_RCSR & I2S_RCSR_RE) return; - - // not using MCLK in slave mode - hope that's ok? - //CORE_PIN23_CONFIG = 3; // AD_B1_09 ALT3=SAI1_MCLK - CORE_PIN21_CONFIG = 3; // AD_B1_11 ALT3=SAI1_RX_BCLK - CORE_PIN20_CONFIG = 3; // AD_B1_10 ALT3=SAI1_RX_SYNC - IOMUXC_SAI1_RX_BCLK_SELECT_INPUT = 1; // 1=GPIO_AD_B1_11_ALT3, page 868 - IOMUXC_SAI1_RX_SYNC_SELECT_INPUT = 1; // 1=GPIO_AD_B1_10_ALT3, page 872 - - // configure transmitter - I2S1_TMR = 0; - I2S1_TCR1 = I2S_TCR1_RFW(1); // watermark at half fifo size - I2S1_TCR2 = I2S_TCR2_SYNC(1) | I2S_TCR2_BCP; - I2S1_TCR3 = I2S_TCR3_TCE; - I2S1_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(31) | I2S_TCR4_MF - | I2S_TCR4_FSE | I2S_TCR4_FSP | I2S_RCR4_FSD; - I2S1_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31); - - // configure receiver - I2S1_RMR = 0; - I2S1_RCR1 = I2S_RCR1_RFW(1); - I2S1_RCR2 = I2S_RCR2_SYNC(0) | I2S_TCR2_BCP; - I2S1_RCR3 = I2S_RCR3_RCE; - I2S1_RCR4 = I2S_RCR4_FRSZ(1) | I2S_RCR4_SYWD(31) | I2S_RCR4_MF - | I2S_RCR4_FSE | I2S_RCR4_FSP; - I2S1_RCR5 = I2S_RCR5_WNW(31) | I2S_RCR5_W0W(31) | I2S_RCR5_FBT(31); + CCM_CCGR5 |= CCM_CCGR5_SAI1(CCM_CCGR_ON); + + // if either transmitter or receiver is enabled, do nothing + if (I2S1_TCSR & I2S_TCSR_TE) return; + if (I2S1_RCSR & I2S_RCSR_RE) return; + + // not using MCLK in slave mode - hope that's ok? + //CORE_PIN23_CONFIG = 3; // AD_B1_09 ALT3=SAI1_MCLK + CORE_PIN21_CONFIG = 3; // AD_B1_11 ALT3=SAI1_RX_BCLK + CORE_PIN20_CONFIG = 3; // AD_B1_10 ALT3=SAI1_RX_SYNC + IOMUXC_SAI1_RX_BCLK_SELECT_INPUT = 1; // 1=GPIO_AD_B1_11_ALT3, page 868 + IOMUXC_SAI1_RX_SYNC_SELECT_INPUT = 1; // 1=GPIO_AD_B1_10_ALT3, page 872 + + // configure transmitter + I2S1_TMR = 0; + I2S1_TCR1 = I2S_TCR1_RFW(1); // watermark at half fifo size + I2S1_TCR2 = I2S_TCR2_SYNC(1) | I2S_TCR2_BCP; + I2S1_TCR3 = I2S_TCR3_TCE; + I2S1_TCR4 = I2S_TCR4_FRSZ(1) | I2S_TCR4_SYWD(31) | I2S_TCR4_MF + | I2S_TCR4_FSE | I2S_TCR4_FSP | I2S_RCR4_FSD; + I2S1_TCR5 = I2S_TCR5_WNW(31) | I2S_TCR5_W0W(31) | I2S_TCR5_FBT(31); + + // configure receiver + I2S1_RMR = 0; + I2S1_RCR1 = I2S_RCR1_RFW(1); + I2S1_RCR2 = I2S_RCR2_SYNC(0) | I2S_TCR2_BCP; + I2S1_RCR3 = I2S_RCR3_RCE; + I2S1_RCR4 = I2S_RCR4_FRSZ(1) | I2S_RCR4_SYWD(31) | I2S_RCR4_MF + | I2S_RCR4_FSE | I2S_RCR4_FSP; + I2S1_RCR5 = I2S_RCR5_WNW(31) | I2S_RCR5_W0W(31) | I2S_RCR5_FBT(31); #endif -} +}