Add AudioAlignLR_F32

pull/13/head
boblark 3 years ago
parent ef373e3e6d
commit 426413a169
  1. 192
      AudioAlignLR_F32.cpp
  2. 161
      AudioAlignLR_F32.h
  3. 1
      OpenAudio_ArduinoLibrary.h
  4. 167
      examples/TestTwinPeaks/TestTwinPeaks.ino

@ -0,0 +1,192 @@
/*------------------------------------------------------------------------------------
AudioAlignLR_F32.cpp
Author: Bob Larkin W7PUA
Date: 28 Feb 2022
See AudioAlignLR_F32.h for notes.
Copyright (c) 2022 Robert Larkin
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
------------------------------------------------------------------------------- */
#include "AudioAlignLR_F32.h"
void AudioAlignLR_F32::update(void) {
audio_block_f32_t *block_i,*block_q;
audio_block_f32_t *blockOut_i,*blockOut_q;
audio_block_f32_t *blockOut_2;
uint16_t i, j, k;
// uint32_t t0 = micros(); // Measure time
if(currentTPinfo.TPstate == TP_IDLE) return;
block_i = AudioStream_F32::receiveWritable_f32(0);
if (!block_i) return;
block_q = AudioStream_F32::receiveWritable_f32(1);
if (!block_q) {
AudioStream_F32::release(block_i);
return;
}
blockOut_i = AudioStream_F32::allocate_f32();
if (!blockOut_i)
{
AudioStream_F32::release(block_i);
AudioStream_F32::release(block_q);
return;
}
blockOut_q = AudioStream_F32::allocate_f32();
if (!blockOut_q)
{
AudioStream_F32::release(block_i);
AudioStream_F32::release(block_q);
AudioStream_F32::release(blockOut_i);
return;
}
blockOut_2 = AudioStream_F32::allocate_f32();
if (!blockOut_2)
{
AudioStream_F32::release(block_i);
AudioStream_F32::release(block_q);
AudioStream_F32::release(blockOut_i);
AudioStream_F32::release(blockOut_q);
return;
}
// One of these may be needed. They are saved for next update
TPextraI = block_i->data[127];
TPextraQ = block_q->data[127];
// Find four cross-correlations for time shifted L-R combinations
if(currentTPinfo.TPstate==TP_MEASURE)
{
currentTPinfo.xcVal[0]=0.0f; // In phase
currentTPinfo.xcVal[1]=0.0f; // Shift I
currentTPinfo.xcVal[2]=0.0f; // DNApply, shift 2 time slots
currentTPinfo.xcVal[3]=0.0f; // Shift Q
for(j=0; j<4; j++)
{
for(k=0; k<124; k++) // Use sum of 124 x-c values
{
currentTPinfo.xcVal[j] += block_i->data[k] * block_q->data[k+j];
}
}
// Decision time. Still in Measure. Can we leave? Need one more update()?
// Sort out the offset that is cross-correlated
if(currentTPinfo.nMeas>5) // Get past junk at startup
{
currentTPinfo.TPerror = ERROR_TP_NONE; // Change later if not true
needOneMore = true; // Change later if not true
if(currentTPinfo.xcVal[0]>TPthreshold && currentTPinfo.xcVal[2]<-TPthreshold)
currentTPinfo.neededShift = 0;
else if(currentTPinfo.xcVal[1]>TPthreshold && currentTPinfo.xcVal[3]<-TPthreshold)
currentTPinfo.neededShift = 1;
else if(currentTPinfo.xcVal[3]>TPthreshold && currentTPinfo.xcVal[1]<-TPthreshold)
currentTPinfo.neededShift = -1;
else // Don't have a combination above the threshold.
{
currentTPinfo.neededShift = 0; // Just a guess
currentTPinfo.TPerror = ERROR_TP_BAD_DATA; // Probably no, or low signal
needOneMore = false; // Not yet
}
}
if(currentTPinfo.nMeas>5 && needOneMore==false && currentTPinfo.TPerror==ERROR_TP_NONE)
{
needOneMore = true; // Last may have been partial data set
}
else if(needOneMore==true && currentTPinfo.TPerror==ERROR_TP_NONE) // We're done measuring
{
currentTPinfo.TPstate = TP_RUN; // Not TP_MEASURE. State doesn't change from here on.
needOneMore = false;
if(currentTPinfo.TPsignalHardware == TP_SIGNAL_CODEC)
digitalWrite(controlPinNumber, 0 ^ (uint16_t)controlPinInvert); // Stop test audio
// Serial.println("Stop Square Wave audio path");
}
else // Try again from the start
{
// Serial.println("Re-start TP Measure");
currentTPinfo.TPstate = TP_MEASURE;
if(currentTPinfo.TPsignalHardware==TP_SIGNAL_CODEC)
digitalWrite(controlPinNumber, 1 & (uint16_t)controlPinInvert);
currentTPinfo.neededShift = 0;
currentTPinfo.TPerror = ERROR_TP_EARLY;
needOneMore = false;
// Unless a reason for sending bad data come up, we will not send it:
//AudioStream_F32::transmit(block_i, 0);
//AudioStream_F32::transmit(block_q, 1);
}
} // End state==TP_MEASURE
else if(currentTPinfo.TPstate == TP_RUN)
{
if(currentTPinfo.neededShift == 0)
{
// Serial.println("No shift");
AudioStream_F32::transmit(block_i, 0); // Not shifted
AudioStream_F32::transmit(block_q, 1); // Not shifted
}
else if(currentTPinfo.neededShift == 1)
{
// Serial.println("Shift 1");
blockOut_i->data[0] = TPextraI; // From last update
// block_i->data[127] is saved for next update, and not
// transmitted now.
for(i=1; i<128; i++)
blockOut_i->data[i] = block_i->data[i-1];
AudioStream_F32::transmit(blockOut_i, 0); // Shifted
AudioStream_F32::transmit(block_q, 1); // Not shifted
}
else if(currentTPinfo.neededShift == -1)
{
// Serial.println("Shift -1");
blockOut_q->data[0] = TPextraQ;
for(i=1; i<128; i++)
blockOut_q->data[i] = block_q->data[i-1];
AudioStream_F32::transmit(block_i, 0); // Not shifted
AudioStream_F32::transmit(blockOut_q, 1); // Shifted
}
} // End state==TP_RUN
// TP_MEASURE needs a fs/4 test signal
if(currentTPinfo.TPstate == TP_MEASURE &&
currentTPinfo.TPsignalHardware == TP_SIGNAL_CODEC)
{
for(int kk=0; kk<128; kk++) // Generate fs/4 square wave
{
// A +/- 0.8 square wave at fs/4 Hz
blockOut_2->data[kk] = -0.8+1.6*(float32_t)((kk/2)&1);
}
AudioStream_F32::transmit(blockOut_2, 2); // NOTE: Goes to third output
}
currentTPinfo.nMeas++;
AudioStream_F32::release(block_i);
AudioStream_F32::release(block_q);
AudioStream_F32::release(blockOut_i);
AudioStream_F32::release(blockOut_q);
AudioStream_F32::release(blockOut_2);
// Serial.println(micros() - t0); // for timing
}

@ -0,0 +1,161 @@
/* ------------------------------------------------------------------------------------
AudioAlignLR_F32.h
Function: Waits for CODEC startup and measures L-R time alignment errors.
Automatically corrects delay errors. Requires extra control to disable
analog audio path from DAC Q to both ADC I and ADC Q.
See the following for more background on the problem being solved:
https://forum.pjrc.com/threads/42336-Reset-audio-board-codec-SGTL5000-in-realtime-processing/page2
https://forum.pjrc.com/threads/57362-AudioSDR-A-single-Audio-block-SDR-(software-defined-radio)-processor-demodulator/page3
"Twin Peaks", or TP, comes from Frank, DD4WH who found, in hsi Convolution SDR, double spectral responses when
the L and R channels were out of time alignment.
Author: Bob Larkin W7PUA
Date: 28 Feb 2022
Input: data_I, data_Q
Outputs: dataOut_I, dataOut_Q, dataTransmit_Q
Update() time: About 12 microseconds for a T4.x.
Copyright (c) 2022 Robert Larkin
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
------------------------------------------------------------------------------- */
//REF:
// Manual I2S codec Phase Correction Utility by Ron Carr, Updated for F32, K7MDL
// Reference: [URL]https://forum.pjrc.com/threads/57362-AudioSDR-A-single-Audio-block-SDR-(software-defined-radio)-processor-demodulator?p=263048&viewfull=1#post263048[/URL]
//
// The variable, currentTPinfo.TPsignalHardware, changes source of
// the signal for going to L&R for correlation.
// If TP_SIGNAL_CODEC there needs to be a switchable hardware link between
// the DAC right channel and both of ADC right and ADC left.
// If TP_SIGNAL_IO_PIN the INO must update a roughly fs/4
// square wave using an i/o pin. That signal is generated by
// the .INO as it is not possible in an audio object.
// Default is TP_SIGNAL_CODEC.
//
// BETA NOTE That calls and operations may change. BETA
#ifndef audio_align_lr_f32_h_
#define audio_align_lr_f32_h_
#include "AudioStream_F32.h"
#include "Arduino.h"
#define TP_IDLE 0
#define TP_MEASURE 1
#define TP_RUN 2
#define TP_SIGNAL_CODEC 0
#define TP_SIGNAL_IO_PIN 1
#define ERROR_TP_EARLY -2
#define ERROR_TP_BAD_DATA -1
#define ERROR_TP_NONE 0
// Needs to be available to INO and AudioAlignLR_F32 also.
struct TPinfo{
uint16_t TPstate;
uint32_t nMeas;
float32_t xcVal[4]; // I-Q cross-correlation sums
int16_t neededShift;
int16_t TPerror;
uint16_t TPsignalHardware;
};
class AudioAlignLR_F32 : public AudioStream_F32
{
//GUI: inputs:2, outputs:3 //this line used for automatic generation of GUI node
//GUI: shortName: AlignLR
public:
AudioAlignLR_F32(uint16_t _hardware, uint16_t _controlPinNumber, bool _controlPinInvert):
AudioStream_F32(2,inputQueueArray)
{
currentTPinfo.TPsignalHardware = _hardware;
controlPinNumber = _controlPinNumber;
controlPinInvert = _controlPinInvert;
sample_rate_Hz = AUDIO_SAMPLE_RATE;
// Changes would be needed for block data sizes other than 128
block_size = AUDIO_BLOCK_SAMPLES;
initTP();
}
AudioAlignLR_F32
(uint16_t _hardware, uint16_t _controlPinNumber, bool _controlPinInvert, const AudioSettings_F32 &settings):
AudioStream_F32(2,inputQueueArray)
{
currentTPinfo.TPsignalHardware = _hardware;
controlPinNumber = _controlPinNumber;
controlPinInvert = _controlPinInvert;
sample_rate_Hz = settings.sample_rate_Hz;
block_size = settings.audio_block_samples;
initTP();
}
void initTP(void) { // Common calls for constructors, not INO's
currentTPinfo.TPstate = TP_IDLE;
currentTPinfo.neededShift = 0;
currentTPinfo.TPerror = ERROR_TP_EARLY;
needOneMore = false;
}
// Returns all the status info, available anytime
TPinfo *read(void) {
return &currentTPinfo;
}
void stateAlignLR(int _TPstate) {
currentTPinfo.TPstate = _TPstate;
if(currentTPinfo.TPstate==TP_MEASURE)
{
currentTPinfo.nMeas = 0; // Timing for the DAC & ADC delays
currentTPinfo.neededShift = 0;
currentTPinfo.TPerror = ERROR_TP_EARLY;
needOneMore = true;
if(currentTPinfo.TPsignalHardware==TP_SIGNAL_CODEC)
{
pinMode(controlPinNumber, OUTPUT); // Turn on special audio path
digitalWrite(controlPinNumber, 1 & (uint16_t)controlPinInvert);
}
}
}
void setThreshold(float32_t _TPthreshold) {
TPthreshold = _TPthreshold;
}
virtual void update(void);
private:
audio_block_f32_t *inputQueueArray[2];
float32_t sample_rate_Hz = AUDIO_SAMPLE_RATE;
uint16_t controlPinNumber = 0;
bool controlPinInvert = true;
uint16_t block_size = 128;
bool needOneMore = false;
float32_t TPthreshold = 1.0f;
float32_t TPextraI = 0.0f;
float32_t TPextraQ = 0.0f;
TPinfo currentTPinfo;
bool outputFlag = false;
uint16_t count = 0;
};
#endif

@ -1,4 +1,5 @@
#include <AudioAlignLR_F32.h>
#include <AudioStream_F32.h>
#include <AudioControlSGTL5000_Extended.h>
#include <control_tlv320aic3206.h>

@ -0,0 +1,167 @@
/* TestTwinPeaks.ino Bob Larkin 26 Feb 2022
* Tests the AlignLR class for finding the relative
* time order of the Codec ADC L and R channels, and then
* corrects these offsets.
*
* This applies a common analog square wave signal to the L and R inputs.
* The cross-correlation between the channels is found for
* the different offsets, showing the identical output.
*
* The outputs of the AlignLR object is then corrected, if necessary,
* by delaying either the L or R channel.
*
* This test allows the analog signal to come from either the Codec
* DAC or from a digital I/O pin on the Teensy.
*
*/
#include "Audio.h"
#include "OpenAudio_ArduinoLibrary.h"
// ******* MINI CONTROL PANEL *******
//
// Pick one, based on the analog signal source harware being used:
//#define SIGNAL_HARDWARE TP_SIGNAL_CODEC
#define SIGNAL_HARDWARE TP_SIGNAL_IO_PIN
//
// Show the Teensy pin used for both Codec and I/O pin signal source methods
#define PIN_FOR_TP 2
//
// Set threshold as needed. Examine 3 output data around update #15
// and use about half of maximum positive value.
#define TP_THRESHOLD 11.0f
//
// Un-comment the next to print samples of the phase-adjusted L&R data
// #define PRINT_OUTPUT_DATA
//
// End Control Panel
const float sample_rate_Hz = 44100.0f;
const int audio_block_samples = 128;
AudioSettings_F32 audio_settings(sample_rate_Hz, audio_block_samples);
uint16_t nMeasLast = 0;
uint32_t timeSquareWave = 0; // Switch every 45 microseconds
AudioInputI2S_F32 i2sIn;
// Pin or Codec Pin, Invert
AudioAlignLR_F32 TwinPeak(SIGNAL_HARDWARE, PIN_FOR_TP, false, audio_settings);
AudioOutputI2S_F32 i2sOut;
#ifdef PRINT_OUTPUT_DATA
AudioRecordQueue_F32 q1;
AudioRecordQueue_F32 q2;
#endif
AudioControlSGTL5000 codec;
AudioConnection_F32 connection1(i2sIn, 0, TwinPeak, 0);
AudioConnection_F32 connection2(i2sIn, 1, TwinPeak, 1);
#if SIGNAL_HARDWARE==TP_SIGNAL_CODEC
AudioConnection_F32 connection4(TwinPeak, 2, i2sOut, 0); // DAC L
AudioConnection_F32 connection6(TwinPeak, 2, i2sOut, 1); // DAC R
#endif
// For test, send to queue. For real, send to receiver.
#ifdef PRINT_OUTPUT_DATA
AudioConnection_F32 connectionA(TwinPeak, 0, q1, 0);
AudioConnection_F32 connectionB(TwinPeak, 1, q2, 0);
#endif
void setup(void) {
AudioMemory_F32(30, audio_settings);
Serial.begin(100); // Any rate
delay(500);
Serial.println("Twin Peaks L-R Synchronizer Test");
codec.inputSelect(AUDIO_INPUT_LINEIN);
codec.enable(); // This needs to preceed TwinPeak setup
#if SIGNAL_HARDWARE==TP_SIGNAL_CODEC
Serial.println("Using SGTL5000 Codec output for cross-correlation test signal.");
#endif
#if SIGNAL_HARDWARE==TP_SIGNAL_IO_PIN
pinMode (PIN_FOR_TP, OUTPUT); // Digital output pin
Serial.println("Using I/O pin for cross-correlation test signal.");
#endif
TwinPeak.setThreshold(TP_THRESHOLD);
TwinPeak.stateAlignLR(TP_MEASURE); // Comes up TP_IDLE
Serial.println("");
Serial.println("Update ------- Outputs -------");
Serial.println("Number -1 0 1 Shift Error");// Column headings
}
void loop(void) {
// The following, under PRINT_OUTPUT_DATA, is an output of the L & R channels
// suitable for examination in a spreadsheet.
#ifdef PRINT_OUTPUT_DATA
static int32_t ii=0;
if(ii==5)
{
q1.begin();
q2.begin();
}
if(ii>5 && ii<15)
{
if(q1.available())
{
Serial.println(" ====================");
float* pf1 = q1.readBuffer();
for(int mm=0; mm<128; mm++)
Serial.println(*(pf1 + mm),5);
q1.freeBuffer();
}
Serial.println("^--L");
if(q2.available())
{
float* pf2 = q2.readBuffer();
for(int mm=0; mm<128; mm++)
Serial.println(*(pf2 + mm),5);
q2.freeBuffer();
}
Serial.println("^--R");
}
if(ii==16)
{
q1.end();
q2.end();
ii++;
}
#endif
// uint32_t tt=micros();
TPinfo* pData = TwinPeak.read();
if(pData->nMeas > nMeasLast && pData->nMeas<20)
{
nMeasLast = pData->nMeas; // This print takes about 6 microseconds
Serial.print(pData->nMeas); Serial.print(", ");
Serial.print(pData->xcVal[3], 6); Serial.print(", ");
Serial.print(pData->xcVal[0], 6); Serial.print(", ");
Serial.print(pData->xcVal[1], 6); Serial.print(", ");
Serial.print(pData->neededShift); Serial.print(", ");
Serial.println(pData->TPerror);
//Serial.println(pData->TPstate);
#if SIGNAL_HARDWARE==TP_SIGNAL_IO_PIN
if(pData->TPerror == 0)
{
TwinPeak.stateAlignLR(TP_RUN); // TP is done
digitalWrite(PIN_FOR_TP, 0);
}
#endif
// Serial.println(micros()-tt);
}
#if SIGNAL_HARDWARE==TP_SIGNAL_IO_PIN
// Generate 11.11 kHz square wave
// For other sample rates, set to roughly 2 sample periods, in microseconds
if(micros()-timeSquareWave >= 45 && pData->TPstate==TP_MEASURE)
{
static uint16_t squareWave = 0;
timeSquareWave = micros();
squareWave = squareWave^1;
digitalWrite(PIN_FOR_TP, squareWave);
}
#endif
}
Loading…
Cancel
Save