parent
f6e578b82c
commit
029b9b3769
@ -0,0 +1,124 @@ |
|||||||
|
/* radioModulatedGenerator_F32.cpp
|
||||||
|
* |
||||||
|
* RadioModulatedGenerator_F32 class - See .h file for information. |
||||||
|
* Copyright (c) 2021 Bob Larkin Created: 15 April 2021 |
||||||
|
* |
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy |
||||||
|
* of this software and associated documentation files (the "Software"), to deal |
||||||
|
* in the Software without restriction, including without limitation the rights |
||||||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
||||||
|
* copies of the Software, and to permit persons to whom the Software is |
||||||
|
* furnished to do so, subject to the following conditions: |
||||||
|
* |
||||||
|
* The above copyright notice and this permission notice shall be included in all |
||||||
|
* copies or substantial portions of the Software. |
||||||
|
* |
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
||||||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
||||||
|
* SOFTWARE. |
||||||
|
*/ |
||||||
|
|
||||||
|
#include "radioModulatedGenerator_F32.h" |
||||||
|
|
||||||
|
// 513 values of the sine wave in a float array:
|
||||||
|
#include "sinTable512_f32.h" |
||||||
|
|
||||||
|
void radioModulatedGenerator_F32::update(void) { |
||||||
|
audio_block_f32_t *inAmpl, *inPhaseFreq; |
||||||
|
audio_block_f32_t *outBlockI, *outBlockQ; |
||||||
|
uint16_t index, i; |
||||||
|
float32_t a, b, deltaPhase, phaseC, amSig; |
||||||
|
|
||||||
|
|
||||||
|
uint32_t tt=micros(); |
||||||
|
|
||||||
|
// Input 0 is for amplitude modulation.
|
||||||
|
if(doAM) { |
||||||
|
inAmpl = AudioStream_F32::receiveReadOnly_f32(0); |
||||||
|
if (!inAmpl) return; |
||||||
|
} |
||||||
|
|
||||||
|
// Input 1 is for phase or frequency modulation.
|
||||||
|
if(doPM || doFM) { |
||||||
|
inPhaseFreq = AudioStream_F32::receiveReadOnly_f32(1); |
||||||
|
if (!inPhaseFreq) { |
||||||
|
if(doAM) AudioStream_F32::release(inAmpl); |
||||||
|
return; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
outBlockI = AudioStream_F32::allocate_f32(); // Output blocks
|
||||||
|
if (!outBlockI) { |
||||||
|
if(doAM) AudioStream_F32::release(inAmpl); |
||||||
|
if(doPM || doFM) AudioStream_F32::release(inPhaseFreq); |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
if(bothIQ) { |
||||||
|
outBlockQ = AudioStream_F32::allocate_f32(); |
||||||
|
if (!outBlockQ) { |
||||||
|
if(doAM) AudioStream_F32::release(inAmpl); |
||||||
|
if(doPM || doFM) AudioStream_F32::release(inPhaseFreq); |
||||||
|
AudioStream_F32::release(outBlockI); |
||||||
|
return; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
for (i=0; i < block_length; i++) { |
||||||
|
if(doPM) // Phase in inPhaseFreq->data[i] is scaled for (0.0, 2*PI)
|
||||||
|
phaseS += (phaseIncrement0 + K512ON2PI*inPhaseFreq->data[i]); |
||||||
|
else if(doFM) |
||||||
|
phaseS += kp*(freq + inPhaseFreq->data[i]); // kp=512.0/sample_rate_Hz
|
||||||
|
else |
||||||
|
phaseS += phaseIncrement0; // No PM or FM alteration to carrier phase
|
||||||
|
|
||||||
|
while (phaseS > 512.0f) |
||||||
|
phaseS -= 512.0f; |
||||||
|
while (phaseS < 0.0f) |
||||||
|
phaseS += 512.0f; |
||||||
|
index = (uint16_t) phaseS; // Does adding 0.5 here cut errors? <<<<<<<<<<<<<<<<<<
|
||||||
|
deltaPhase = phaseS -(float32_t) index; |
||||||
|
/* Read two nearest values of input value from the sin table */ |
||||||
|
a = sinTable512_f32[index]; |
||||||
|
b = sinTable512_f32[index+1]; |
||||||
|
if(doAM) { |
||||||
|
amSig = 1.0f + inAmpl->data[i]; |
||||||
|
if(amSig<0.0f) |
||||||
|
amSig = 0.0f; // Common def of AM going back to vacuum tubes
|
||||||
|
outBlockI->data[i] = amplitude_pk*amSig*(a + 0.001953125*(b-a)*deltaPhase); /* Linear interpolation process */ |
||||||
|
} |
||||||
|
else |
||||||
|
outBlockI->data[i] = amplitude_pk*(a + 0.001953125*(b-a)*deltaPhase); |
||||||
|
|
||||||
|
if(bothIQ) { |
||||||
|
/* Shift forward phaseQ_I and get cos. First, the calculation of index of the table */ |
||||||
|
phaseC = phaseS + phaseQ_I; |
||||||
|
while (phaseC > 512.0f) |
||||||
|
phaseC -= 512.0f; |
||||||
|
while (phaseC < 0.0f) |
||||||
|
phaseC += 512.0f; |
||||||
|
index = (uint16_t) phaseC; |
||||||
|
deltaPhase = phaseC -(float32_t) index; |
||||||
|
/* Read two nearest values of input value from the sin table */ |
||||||
|
a = sinTable512_f32[index]; |
||||||
|
b = sinTable512_f32[index+1]; |
||||||
|
if(doAM) // amSig from above
|
||||||
|
outBlockQ->data[i] = amplitudeQ_I*amplitude_pk*amSig*(a + 0.001953125*(b-a)*deltaPhase); |
||||||
|
else |
||||||
|
outBlockQ->data[i] = amplitudeQ_I*amplitude_pk*(a + 0.001953125*(b-a)*deltaPhase); |
||||||
|
} |
||||||
|
} |
||||||
|
if(doAM) AudioStream_F32::release(inAmpl); |
||||||
|
if(doPM || doFM) AudioStream_F32::release(inPhaseFreq); |
||||||
|
AudioStream_F32::transmit(outBlockI, 0); |
||||||
|
AudioStream_F32::release (outBlockI); |
||||||
|
if(bothIQ) { |
||||||
|
AudioStream_F32::transmit(outBlockQ, 1); |
||||||
|
AudioStream_F32::release (outBlockQ); |
||||||
|
} |
||||||
|
Serial.println(micros() - tt); |
||||||
|
} |
@ -0,0 +1,175 @@ |
|||||||
|
/* radioModulatedGenerator_F32.h
|
||||||
|
* |
||||||
|
* RadioModulatedGenerator_F32 class |
||||||
|
* |
||||||
|
* Created: Bob Larkin 15 April 2021 |
||||||
|
* |
||||||
|
* For AM, the input is the 0 (left) channel. 100% AM modulation corresponds |
||||||
|
* to this input -1.0 to 1.0. Overmodulation (more that 100%) results in peak |
||||||
|
* increases beyond twice amplitude, but full abrupt clipping at the |
||||||
|
* bottom zero point. Clipping on the top would be in an external block, |
||||||
|
* if desired |
||||||
|
* |
||||||
|
* For PM or FM (only one at a time) the input goes to the 1 channel. For PM, |
||||||
|
* the input level corresponds to radians of phase change, + or -. For FM, |
||||||
|
* the input correspondss to Hz of deviation. |
||||||
|
* |
||||||
|
* For digital modulation, such as QAM, there can be both phase and amplitude |
||||||
|
* modulation. This would be set by |
||||||
|
* doModulation_AM_PM_FM(true, true, false, bool _bothIQ) |
||||||
|
* |
||||||
|
* If _bothIQ is false, the output is all at channel 0. This is a standard |
||||||
|
* modulated waveform as would be transmitted by wires or radio. If _bothIQ |
||||||
|
* is true, a pair of outputs on channels 0 and 1 correspond to I and Q |
||||||
|
* components, as would be used with "phasing mixers" to convert the transmit |
||||||
|
* frequency. |
||||||
|
* |
||||||
|
* Amplitude and phase corrections can be applied when there I-Q outputs. |
||||||
|
* This can compensate for errors in the external hardware. See the functions: |
||||||
|
* phaseQ_I(float32_t ph) |
||||||
|
* amplitudeQ_I(float32_t _a) |
||||||
|
* |
||||||
|
* Time: T3.6 update() block of 128 is about 53 microseconds AM Single output |
||||||
|
* T4.x update() block of 128 is about 20 microseconds AM Single output |
||||||
|
* T4.x update() block of 128 is about 35 microseconds AM I + Q outputs |
||||||
|
* For T4.x, FM is 1 or 2 microseconds faster than AM. |
||||||
|
* |
||||||
|
* Copyright (c) 2021 Bob Larkin |
||||||
|
* |
||||||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy |
||||||
|
* of this software and associated documentation files (the "Software"), to deal |
||||||
|
* in the Software without restriction, including without limitation the rights |
||||||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
||||||
|
* copies of the Software, and to permit persons to whom the Software is |
||||||
|
* furnished to do so, subject to the following conditions: |
||||||
|
* |
||||||
|
* The above copyright notice and this permission notice shall be included in all |
||||||
|
* copies or substantial portions of the Software. |
||||||
|
* |
||||||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
||||||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
||||||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
||||||
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
||||||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
||||||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
||||||
|
* SOFTWARE. |
||||||
|
*/ |
||||||
|
|
||||||
|
#ifndef modulate_AM_PM_FM_f32_h_ |
||||||
|
#define modulate_AM_PM_FM_f32_h_ |
||||||
|
|
||||||
|
#include "AudioStream_F32.h" |
||||||
|
#include "arm_math.h" |
||||||
|
|
||||||
|
#ifndef M_PI |
||||||
|
#define M_PI 3.14159265358979323846 |
||||||
|
#endif |
||||||
|
|
||||||
|
#ifndef M_PI_2 |
||||||
|
#define M_PI_2 1.57079632679489661923 |
||||||
|
#endif |
||||||
|
|
||||||
|
#ifndef M_TWOPI |
||||||
|
#define M_TWOPI (M_PI * 2.0) |
||||||
|
#endif |
||||||
|
|
||||||
|
#define MF2_PI 6.2831853f |
||||||
|
#define K512ON2PI 81.487331f |
||||||
|
|
||||||
|
class radioModulatedGenerator_F32 : public AudioStream_F32 { |
||||||
|
//GUI: inputs:2, outputs:2 //this line used for automatic generation of GUI node
|
||||||
|
//GUI: shortName:Modulator //this line used for automatic generation of GUI node
|
||||||
|
public: |
||||||
|
radioModulatedGenerator_F32(void) : AudioStream_F32(2, inputQueueArray_f32) { } //uses default AUDIO_SAMPLE_RATE from AudioStream.h
|
||||||
|
radioModulatedGenerator_F32(const AudioSettings_F32 &settings) : AudioStream_F32(2, inputQueueArray_f32) { |
||||||
|
setSampleRate_Hz(settings.sample_rate_Hz); |
||||||
|
setBlockLength(settings.audio_block_samples); |
||||||
|
} |
||||||
|
|
||||||
|
void frequency(float32_t fr) { // Center Frequency in Hz
|
||||||
|
freq = fr; |
||||||
|
if (freq < 0.0f) freq = 0.0f; |
||||||
|
else if (freq > sample_rate_Hz/2.0f) freq = sample_rate_Hz/2.0f; |
||||||
|
phaseIncrement0 = 512.0f * freq / sample_rate_Hz; |
||||||
|
} |
||||||
|
|
||||||
|
/* Externally, phase comes in the range (0,2*M_PI) keeping with C math functions
|
||||||
|
* Internally, the full circle is represented as (0.0, 512.0). This is |
||||||
|
* convenient for finding the entry to the sine table. |
||||||
|
*/ |
||||||
|
void phase_r(float32_t ph) { |
||||||
|
while (ph < 0.0f) ph += MF2_PI; |
||||||
|
while (ph > MF2_PI) ph -= MF2_PI; |
||||||
|
phaseS = 512.0f * ph / MF2_PI; |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
// phaseQ_I is the number of radians that the cosine output leads the
|
||||||
|
// sine output. The default is M_PI_2 = pi/2 = 1.57079633 radians,
|
||||||
|
// corresponding to 90.00 degrees cosine leading sine.
|
||||||
|
void phaseQ_I_r(float32_t ph) { |
||||||
|
while (ph < 0.0f) ph += MF2_PI; |
||||||
|
while (ph > MF2_PI) ph -= MF2_PI; |
||||||
|
// Internally a full circle is 512.00 of phase
|
||||||
|
phaseQ_I = 512.0f * ph / MF2_PI; |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
// amplitudeQ_I an amplitude unbalance introduced to the Q channel to
|
||||||
|
// compensate for errors in external hardware..
|
||||||
|
void amplitudeQI(float32_t _a) { |
||||||
|
amplitudeQ_I = _a; |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
// The amplitude, a, is the peak, as in zero-to-peak. This produces outputs
|
||||||
|
// ranging from -a to +a. Both outputs are the same amplitude.
|
||||||
|
// This will be multiplied by the AM input from Input 0. This is "power control"
|
||||||
|
void amplitude(float32_t _a) { |
||||||
|
amplitude_pk = _a; |
||||||
|
return; |
||||||
|
} |
||||||
|
|
||||||
|
void doModulation_AM_PM_FM(bool _doAM, bool _doPM, bool _doFM, bool _bothIQ) { |
||||||
|
doAM = _doAM; |
||||||
|
doPM = _doPM; |
||||||
|
doFM = _doFM; |
||||||
|
if(doPM & doFM) doFM=false; // One at a time
|
||||||
|
bothIQ = _bothIQ; |
||||||
|
} |
||||||
|
|
||||||
|
// Do not use. For now, dynamic sample rate is not generally supported.
|
||||||
|
void setSampleRate_Hz(float32_t fs_Hz) { |
||||||
|
sample_rate_Hz = fs_Hz; |
||||||
|
// Check freq range
|
||||||
|
if (freq > sample_rate_Hz/2.0f) freq = sample_rate_Hz/2.0f; |
||||||
|
// update phase increment for new frequency, and kp
|
||||||
|
phaseIncrement0 = 512.0f * freq/fs_Hz; |
||||||
|
kp = 512.0f/sample_rate_Hz; |
||||||
|
} |
||||||
|
|
||||||
|
// Do not use. Dynamic block length is un-supported.
|
||||||
|
void setBlockLength(uint16_t bl) { |
||||||
|
if(bl > 128) bl = 128; |
||||||
|
block_length = bl; |
||||||
|
} |
||||||
|
|
||||||
|
virtual void update(void); |
||||||
|
|
||||||
|
private: |
||||||
|
audio_block_f32_t *inputQueueArray_f32[2]; |
||||||
|
float32_t freq = 10000.0f; // Center frequecy, Hz
|
||||||
|
float32_t phaseS = 0.0f; |
||||||
|
float32_t phaseQ_I = 128.00; |
||||||
|
float32_t amplitudeQ_I = 1.0f; |
||||||
|
float32_t amplitude_pk = 1.0f; |
||||||
|
float32_t sample_rate_Hz = AUDIO_SAMPLE_RATE; // Base, center freq
|
||||||
|
float32_t kp = 512.0/sample_rate_Hz; |
||||||
|
float32_t phaseIncrement0 = kp*freq;; |
||||||
|
uint16_t block_length = 128; |
||||||
|
bool doAM = false; |
||||||
|
bool doPM = false; |
||||||
|
bool doFM = false; |
||||||
|
bool bothIQ = false; // Quadrature outputs for analog mixers
|
||||||
|
}; |
||||||
|
#endif |
Loading…
Reference in new issue