You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
161 lines
6.1 KiB
161 lines
6.1 KiB
3 years ago
|
/*
|
||
|
* BFSK_random.ino Test the BFSK at 1200 baud with random data
|
||
|
* to determine byte error rate. Vary S/N. A slow process.
|
||
|
* F32 Teensy Audio Librarylibrary
|
||
|
* Bob Larkin 8 June 2022, Rev 15 June 2022
|
||
|
* Public Domain
|
||
|
*/
|
||
|
#include "OpenAudio_ArduinoLibrary.h"
|
||
|
#include "AudioStream_F32.h"
|
||
|
#include <Audio.h>
|
||
|
|
||
|
|
||
|
// Uncomment to see frequency response of input BPF:
|
||
|
// #define PRINT_BPF_FREQ_RESPONSE
|
||
|
|
||
|
int numberSamples = 0;
|
||
|
float* pDat = NULL;
|
||
|
float32_t fa, fb, delf, dAve; // For sweep
|
||
|
struct uartData* pData;
|
||
|
uint32_t errorCount, errorCountFrame;
|
||
|
float32_t inFIRCoef[200];
|
||
|
float32_t inFIRadb[100];
|
||
|
float32_t inFIRData[528];
|
||
|
float32_t inFIRrdb[500];
|
||
|
|
||
|
// A data storage FIFO for send data
|
||
|
float32_t xmitData[128];
|
||
|
int64_t indexIn = 0ULL;
|
||
|
// Correlation data
|
||
|
float32_t xcor[128];
|
||
|
|
||
|
// LPF FIR for 1200 baud
|
||
|
static float32_t LPF_FIR_Sinc[40] = {
|
||
|
0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f,
|
||
|
0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f,
|
||
|
0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f,
|
||
|
0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f,
|
||
|
0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f, 0.025f};
|
||
|
|
||
|
float32_t LPF_FIR_State[128 + 40];
|
||
|
|
||
|
// T3.x supported sample rates: 2000, 8000, 11025, 16000, 22050, 24000, 32000, 44100, 44117, 48000,
|
||
|
// 88200, 88235 (44117*2), 95680, 96000, 176400, 176470, 192000
|
||
|
// T4.x supports any sample rate the codec will handle.
|
||
|
const float sample_rate_Hz = 48000.0f ; // 24000, 44117, or other frequencies listed above (untested)
|
||
|
const int audio_block_samples = 128; // Others untested
|
||
|
AudioSettings_F32 audio_settings(sample_rate_Hz, audio_block_samples); // Not used
|
||
|
|
||
|
RadioBFSKModulator_F32 modulator1(audio_settings);
|
||
|
AudioSynthGaussian_F32 gwn1;
|
||
|
AudioMixer4_F32 mixer4_1;
|
||
|
AudioFilterFIRGeneral_F32 inputFIR;
|
||
|
RadioFMDiscriminator_F32 fmDet1(audio_settings);
|
||
|
UART_F32 uart1(audio_settings);
|
||
|
AudioAnalyzeRMS_F32 rms1;
|
||
|
AudioOutputI2S_F32 audioOutI2S1(audio_settings);
|
||
|
AudioConnection_F32 patchCord1(modulator1, 0, mixer4_1, 0);
|
||
|
AudioConnection_F32 patchCord2(gwn1, 0, mixer4_1, 1);
|
||
|
AudioConnection_F32 patchCord4(mixer4_1, 0, inputFIR, 0);
|
||
|
AudioConnection_F32 patchCord5(inputFIR, 0, rms1, 0);
|
||
|
AudioConnection_F32 patchCord7(inputFIR, 0, fmDet1, 0);
|
||
|
AudioConnection_F32 patchcord8(fmDet1, 0, uart1, 0);
|
||
|
AudioControlSGTL5000 sgtl5000_1;
|
||
|
|
||
|
void setup() {
|
||
|
uint32_t spdb;
|
||
|
static uint16_t dm0;
|
||
|
static uint32_t nn;
|
||
|
|
||
|
Serial.begin(300); // Any value, it is not used
|
||
|
delay(1000);
|
||
|
Serial.println("OpenAudio_ArduinoLibrary - Test BFSK");
|
||
|
Serial.println("Byte error statistics with a random bit pattern.");
|
||
|
delay(1000);
|
||
|
AudioMemory_F32(30, audio_settings);
|
||
|
// Enable the audio shield, select input, and enable output
|
||
|
sgtl5000_1.enable(); //start the audio board
|
||
|
sgtl5000_1.inputSelect(AUDIO_INPUT_LINEIN); // or AUDIO_INPUT_MIC
|
||
|
modulator1.setLPF(NULL, NULL, 0); // No LPF
|
||
|
spdb = modulator1.setBFSK(1200.0f, 10, 1200.0f, 2200.0f);
|
||
|
modulator1.amplitude(1.00f);
|
||
|
Serial.print("Resulting audio samples per data bit = ");
|
||
|
Serial.println(spdb);
|
||
|
|
||
|
gwn1.amplitude(0.5f); // Set S/N
|
||
|
mixer4_1.gain(0, 1.0f); // Modulator in
|
||
|
mixer4_1.gain(1, 1.0f); // Gaussian noise in
|
||
|
|
||
|
// Design a bandpass filter to limit the input to the FM discriminator
|
||
|
for(int jj=0; jj<12; jj++) inFIRadb[jj] = -100.0f;
|
||
|
for(int jj=3; jj<=11; jj++) inFIRadb[jj] = 0.0f;
|
||
|
for(int jj=12; jj<100; jj++) inFIRadb[jj] = -100.0f;
|
||
|
inputFIR.FIRGeneralNew(inFIRadb, 200, inFIRCoef, 40.0f, inFIRData);
|
||
|
|
||
|
#ifdef PRINT_BPF_FREQ_RESPONSE
|
||
|
// Gather the data for a plot of the response. Output goes to Serial Monitor.
|
||
|
// I use highlighting and Ctrl-C to get the data for plotting.
|
||
|
Serial.println("\nResponse of Bandpass Filter ahead of the Discriminator in dB:");
|
||
|
inputFIR.getResponse(500, inFIRrdb);
|
||
|
for(int jj =0; jj<500; jj++)
|
||
|
{
|
||
|
Serial.print(48.0f * (int)jj); Serial.print(","); // Frequency, Hz
|
||
|
Serial.println(inFIRrdb[jj]); // Respnse in dB
|
||
|
}
|
||
|
Serial.println("----------------------------");
|
||
|
#endif
|
||
|
|
||
|
fmDet1.filterOutFIR(LPF_FIR_Sinc, 40, LPF_FIR_State, 0.99f);
|
||
|
fmDet1.initializeFMDiscriminator(1100.0f, 2350.0f, 2.0f, 3.0f);
|
||
|
uart1.setUART(40, 20, 8, PARITY_NONE, 1);
|
||
|
|
||
|
// Next we set the signal and noise
|
||
|
// amplitudes. The pow() equation allows us to enter the S/N directly.
|
||
|
// S/N in dB --v
|
||
|
modulator1.amplitude(pow(10.0, 0.05f*(0.00f-7.65f)));
|
||
|
gwn1.amplitude(1.0f); // Noise fixed, vary signal level
|
||
|
// See BFSKsnr.ino for details
|
||
|
|
||
|
// We can now evaluate the performance of the transmitter and receiver
|
||
|
// by varying the S/N and counting the number of data errors. The data
|
||
|
// will be set randomly over all 8 data bits.
|
||
|
// Thus we can compute error levels vs S/N in dB
|
||
|
for(float32_t snrDB=4.0f; snrDB<=11.0f; snrDB+=0.5f)
|
||
|
//for(float32_t snrDB=11.0f; snrDB<=13.5f; snrDB+=0.5f) // Use with nn=100000
|
||
|
{
|
||
|
modulator1.amplitude(pow(10.0f, 0.05f*(snrDB-7.65f)));
|
||
|
nn = 0;
|
||
|
errorCount = 0;
|
||
|
|
||
|
//while(nn<100000 && errorCount<1000) // Use for S/N > 11 dB
|
||
|
while(nn<10000 && errorCount<1000)
|
||
|
{
|
||
|
if( modulator1.bufferHasSpace() )
|
||
|
{
|
||
|
dm0 = random(255); // Serial.println(dm0);
|
||
|
// Save a copy of sent data in circular buffer
|
||
|
xmitData[indexIn & 0X7F] = (float32_t)dm0;
|
||
|
indexIn++;
|
||
|
modulator1.sendData(0X200 | (dm0 << 1));
|
||
|
nn++;
|
||
|
}
|
||
|
if(uart1.getNDataBuffer() > 0)
|
||
|
{
|
||
|
pData = uart1.readUartData(); // Pointer to data structure
|
||
|
|
||
|
if( pData->data!=xmitData[(indexIn-65LL) & 0X7F] &&
|
||
|
pData->data!=xmitData[(indexIn-66LL) & 0X7F] )
|
||
|
{
|
||
|
errorCount++;
|
||
|
}
|
||
|
}
|
||
|
} // End, waiting for enough data
|
||
|
Serial.print("S/N= "); Serial.print(snrDB, 3);
|
||
|
Serial.print(", number= "); Serial.print(nn);
|
||
|
Serial.print(", errors= "); Serial.println(errorCount);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void loop() {
|
||
|
}
|