You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
OpenAudio_ArduinoLibrary/radioCESSBtransmit_F32.cpp

275 lines
11 KiB

/*
* radioCESSBtransmit_F32.cpp
*
* Bob Larkin, Dec 2022, in support of the library:
* Chip Audette, OpenAudio_ArduinoLibrary
*
* MIT License, Use at your own risk.
*
* See radioCESSBtransmit_F32.h for technical info.
*
*/
#include "radioCESSBtransmit_F32.h"
// 513 values of the sine wave in a float array:
#include "sinTable512_f32.h"
// sincos(ph) inputs phase on (0, 512) and outputs private sn, cs
// A simplified version of the F32 synthesizer class
// AudioSynthSineCosine_F32. Full F32 accuracy
void radioCESSBtransmit_F32::sincos(float32_t ph) {
uint16_t index;
float32_t a, b, deltaPhase;
index = (uint16_t)ph;
deltaPhase = ph -(float32_t)index;
/* Read two nearest values of input value from the sin table */
a = sinTable512_f32[index];
b = sinTable512_f32[index+1];
sn = a+(b-a)*deltaPhase; /* Linear interpolation process */
/* Repeat for cosine by adding 90 degrees phase */
index = (index + 128) & 0x01ff;
/* Read two nearest values of input value from the sin table */
a = sinTable512_f32[index];
b = sinTable512_f32[index+1];
/* deltaPhase will be the same as used for sin */
cs = a +(b-a)*deltaPhase; /* Linear interpolation process */
// if(ttt++ <100){Serial.print(ttt); Serial.print(","); Serial.println(sn, 8); } <<<<<<
}
void radioCESSBtransmit_F32::update(void) {
audio_block_f32_t *blockIn, *blockOutI, *blockOutQ;
// Temporary storage. At an audio sample rate of 96 ksps, the used
// space will be half of the declared space.
// Todo: Cut 1 or two arrays out by more sharing
float32_t weaverIn[32];
float32_t weaverMI[32];
float32_t weaverMQ[32];
float32_t workingDataI[128];
float32_t workingDataQ[128];
float32_t delayedDataI[64]; // Allows batching of 64 data points
float32_t delayedDataQ[64];
float32_t diffI[64];
float32_t diffQ[64];
if(sampleRate!=SAMPLE_RATE_44_50 && sampleRate!=SAMPLE_RATE_88_100)
return;
// Get all needed resources, or return if not available.
blockIn = AudioStream_F32::receiveReadOnly_f32();
if (!blockIn)
{ return; }
blockOutI = AudioStream_F32::allocate_f32(); // a block for I output
if (!blockOutI)
{
AudioStream_F32::release(blockIn);
return;
}
blockOutQ = AudioStream_F32::allocate_f32(); // and for Q
if (!blockOutQ)
{
AudioStream_F32::release(blockOutI);
AudioStream_F32::release(blockIn);
return;
}
/* A +/- pulse to test timing of various delays. PULSE TEST
* This replaces any input from the audio stream,
* and levels shown are for gainIn==1.0.
for(int kk=0; kk<128; kk++)
{
uint16_t y=(ny & 1023);
// pulse max at 1.548 is just starting to clip
// 2.189 is 3 dB increase
if (y>=100 && y<115) blockIn->data[kk] = 2.189f;
else if(y>=115 && y<130) blockIn->data[kk] = -2.189f;
else blockIn->data[kk] = 0.0f;
ny++;
// Serial.println(blockIn->data[kk]);
} */
// Decimate 48 ksps to 12 ksps, 128 to 32 samples
// or 96 ksps to 12 ksps, 128 to 16 samples (not yet)
arm_fir_decimate_f32(&decimateInst, &(blockIn->data[0]),
&weaverIn[0], 128);
// We now have 32 or 16 samples to process and interpolate out
float32_t gainIn2 = 2.0f*gainIn; // 2 because the mixers are 0.5
for(int k=0; k<nW; k++)
{
weaverIn[k] *= gainIn2; // Input gain for CESSB
phaseW += phaseIncrementW;
if(phaseW >=512.0f)
phaseW -= 512.0f;
sincos(phaseW); // Generate cs, sn
if(sidebandReverse)
weaverMI[k] = -weaverIn[k]*cs; // Quadrature mixers
else
weaverMI[k] = weaverIn[k]*cs;
weaverMQ[k] = weaverIn[k]*sn;
}
// Filter Weaver I and Q using first half of Out array.
// Bandwidth at this point is 0 to 1350 Hz.
arm_fir_f32(&firInstWeaverI, weaverMI, workingDataI, nW);
arm_fir_f32(&firInstWeaverQ, weaverMQ, workingDataQ, nW);
// Note: Sine wave envelope gain from blockIn->data[kk] to here is gainIn
// Mesaure input power and peak envelope, SSB before any CESSB processing
for(int k=0; k<nW; k++)
{
float32_t pwrWorkingData = workingDataI[k]*workingDataI[k] + workingDataQ[k]*workingDataQ[k];
float32_t vWD = sqrtf(pwrWorkingData); // Envelope
powerSum0 += pwrWorkingData;
if(vWD > maxMag0)
maxMag0 = vWD; // Peak envelope
countPower0++;
}
// Interpolate by 2 up to 24 ksps rate
for(int k=0; k<nW; k++) // 48 ksps: 0 to 31
{
int k2 = 2*(nW - k) - 1; // 48 ksps 63 to 1
// Zero pack, working from the bottom to not overwrite
workingDataI[k2] = 0.0f; // 64 element array
workingDataI[k2-1] = workingDataI[nW-k-1];
workingDataQ[k2] = 0.0f;
workingDataQ[k2-1] = workingDataQ[nW-k-1];
}
// LPF with gain of 2 built into coefficients, correct for zeros.
arm_fir_f32(&firInstInterpolate1I, workingDataI, workingDataI, nC);
arm_fir_f32(&firInstInterpolate1Q, workingDataQ, workingDataQ, nC);
// WorkingDataI and Q are now at 24 ksps and ready for clipping
// For input 48 ksps this produces 64 numbers
// Voltage gain from blockIn->data to here for small sine wave is 1.0
for(int kk=0; kk<nC; kk++)
{
float32_t power = workingDataI[kk]*workingDataI[kk] + workingDataQ[kk]*workingDataQ[kk];
float32_t mag = sqrtf(power);
if(mag > 1.0f) // This the clipping, scaled to 1.0, desired max
{
workingDataI[kk] /= mag;
workingDataQ[kk] /= mag;
}
powerSum0 += power; // For measuring amount of clipping
if(mag > maxMag0)
maxMag0 = mag;
}
// clipperIn needs spectrum control, so LP filter it. Same filter coeffs as Weaver.
// Both BW of the signal and the sample rate have been doubled.
arm_fir_f32(&firInstClipperI, workingDataI, workingDataI, nC);
arm_fir_f32(&firInstClipperQ, workingDataQ, workingDataQ, nC);
// Ready to compensate for filter overshoots
for (int k=0; k<64; k++)
{
/* ======= Sidebar: Circular 2^n length delay arrays ========
*
* The length of the array, N,
* must be a power of 2. For example N=2^6 = 64. The minimum
* delay possible is the trivial case of 0 up to N-1.
* As in C, let i be the index of the N array elements which
* would range from 0 to N-1. If p is an integer, that is a power
* of 2 also, with p >= n, it can serve as an index to the
* delay array by "ANDing" it with (N-1). That is,
* i = p & (N-1). It can be convenient if the largest
* possible value of the integer p, plus 1, is an integer multiple
* of the arrray size N, as then the rollover of p will not cause
* a jump in i. For instance, if p is an uint8_t with a maximum
* value of pmax=255, (pmax+1)/N = (255+1)/64 = 4, which is an
* integer. This combination will have no problems from rollover
* of p.
*
* The new data point is entered at index p & (N - 1). To
* achieve a delay of d, the output of the delay array is taken
* at index ((p-d) & (N-1)). The index is then incremented by 1.
* ========================================================== */
// Circular delay line for signal to align data with FIR output
// Put I & Q data points into the delay arrays
osDelayI[indexOsDelay & 0X3F] = workingDataI[k];
osDelayQ[indexOsDelay & 0X3F] = workingDataQ[k];
// Remove 64 points delayed data from line and save for later
delayedDataI[k] = osDelayI[(indexOsDelay - 63) & 0X3F];
delayedDataQ[k] = osDelayQ[(indexOsDelay - 63) & 0X3F];
indexOsDelay++;
// Delay line to allow strongest envelope to be used for compensation
// We only need to look ahead 1 or behind 1, so delay line of 4 is OK.
// Enter latest envelope to delay array
osEnv[indexOsEnv & 0X03] = sqrtf(
workingDataI[k]*workingDataI[k] + workingDataQ[k]*workingDataQ[k]);
// look over the envelope curve to find the max
float32_t eMax = 0.0f;
if(osEnv[(indexOsEnv) & 0X03] > eMax) // One just entered
eMax = osEnv[(indexOsEnv) & 0X03];
if(osEnv[(indexOsEnv-1) & 0X03] > eMax) // Entered one before
eMax = osEnv[(indexOsEnv-1) & 0X03];
if(osEnv[(indexOsEnv-2) & 0X03] > eMax) // Entered one before that
eMax = osEnv[(indexOsEnv-2) & 0X03];
if(eMax < 1.0f)
eMax = 1.0f; // Below clipping region
indexOsEnv++;
// Clip the signal to 1.0. -2 allows 1 look ahead on signal.
float32_t eCorrectedI = osDelayI[(indexOsDelay - 2) & 0X3F] / eMax;
float32_t eCorrectedQ = osDelayQ[(indexOsDelay - 2) & 0X3F] / eMax;
// Filtering is linear, so we only need to filter the difference between
// the signal and the clipper output. This needs less filtering, as the
// difference is many dB below the signal to begin with. Hershberger 2014
diffI[k] = osDelayI[(indexOsDelay - 2) & 0X3F] - eCorrectedI;
diffQ[k] = osDelayQ[(indexOsDelay - 2) & 0X3F] - eCorrectedQ;
} // End, for k=0 to 63
// Filter the differences, osFilter has 129 taps and 64 delay
arm_fir_f32(&firInstOShootI, diffI, diffI, nC);
arm_fir_f32(&firInstOShootQ, diffQ, diffQ, nC);
// Do the overshoot compensation
for(int k=0; k<64; k++)
{
workingDataI[k] = delayedDataI[k] - gainCompensate*diffI[k];
workingDataQ[k] = delayedDataQ[k] - gainCompensate*diffQ[k];
}
// Finally interpolate to 48 or 96 ksps. Data is in workingDataI[k]
// and is 64 samples for audio 48 ksps.
for(int k=0; k<nC; k++) // Audio sampling at 48 ksps: 0 to 63
{
int k2 = 2*(nC - k) - 1; // 48 ksps 63 to 1
// Zero pack, working from the bottom to not overwrite
workingDataI[k2] = 0.0f;
workingDataI[k2-1] = workingDataI[nC-k-1];
workingDataQ[k2] = 0.0f;
workingDataQ[k2-1] = workingDataQ[nC-k-1];
}
// LPF with gain of 2 built into coefficients, correct for zeros.
arm_fir_f32(&firInstInterpolate2I, workingDataI, &blockOutI->data[0], 2*nC);
arm_fir_f32(&firInstInterpolate2Q, workingDataQ, &blockOutQ->data[0], 2*nC);
// Voltage gain from blockIn->data to here for small sine wave is 1.0
// Measure output power and peak envelope, after CESSB
for(int k=0; k<128; k++)
{
float32_t pwrOut = blockOutI->data[k]*blockOutI->data[k] + blockOutQ->data[k]*blockOutQ->data[k];
float32_t vWD = sqrtf(pwrOut); // Envelope
powerSum1 += pwrOut;
if(vWD > maxMag1)
maxMag1 = vWD; // Peak envelope
countPower1++;
}
AudioStream_F32::transmit(blockOutI, 0); // send the outputs
AudioStream_F32::transmit(blockOutQ, 1);
AudioStream_F32::release(blockIn); // Release the blocks
AudioStream_F32::release(blockOutI);
AudioStream_F32::release(blockOutQ);
} // end update()