|
|
|
/*
|
|
|
|
* analyze_fft4096_iq_F32.cpp Assembled by Bob Larkin 18 Feb 2022
|
|
|
|
*
|
|
|
|
* External Memory **** BETA TEST VERSION - NOT FULLY TESTED **** <<<<<<<<<<
|
|
|
|
*
|
|
|
|
* This class is Teensy 4.x ONLY.
|
|
|
|
* F32 Bolocks are always 128 floats, and any data rate is OK.
|
|
|
|
*
|
|
|
|
* Converted to F32 floating point input and also extended
|
|
|
|
* for complex I and Q inputs
|
|
|
|
* * Adapted all I/O to be F32 floating point for OpenAudio_ArduinoLibrary
|
|
|
|
* * Future: Add outputs for I & Q FFT x2 for overlapped FFT
|
|
|
|
* * Windowing None, Hann, Kaiser and Blackman-Harris.
|
|
|
|
*
|
|
|
|
* Conversion Copyright (c) 2022 Bob Larkin
|
|
|
|
* Same MIT license as PJRC:
|
|
|
|
*
|
|
|
|
* Audio Library for Teensy 3.X
|
|
|
|
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
|
|
|
|
*
|
|
|
|
* Development of this audio library was funded by PJRC.COM, LLC by sales of
|
|
|
|
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
|
|
|
|
* open source software by purchasing Teensy or other PJRC products.
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
|
|
* in the Software without restriction, including without limitation the rights
|
|
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
|
|
* furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice, development funding notice, and this permission
|
|
|
|
* notice shall be included in all copies or substantial portions of the Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
|
|
* THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
// *************** TEENSY 4.X ONLY ****************
|
|
|
|
#if defined(__IMXRT1062__)
|
|
|
|
|
|
|
|
#include <Arduino.h>
|
|
|
|
#include "analyze_fft4096_iqem_F32.h"
|
|
|
|
|
|
|
|
// Note: Suppports block size of 128 only. Very "built in."
|
|
|
|
|
|
|
|
// Move audio data from audio_block_f32_t to the interleaved FFT instance buffer.
|
|
|
|
static void copy_to_fft_buffer1(void *destination, const void *sourceI, const void *sourceQ) {
|
|
|
|
const float *srcI = (const float *)sourceI;
|
|
|
|
const float *srcQ = (const float *)sourceQ;
|
|
|
|
float *dst = (float *)destination; // part of fft_buffer array. 256 floats per call
|
|
|
|
for (int i=0; i < 128; i++) {
|
|
|
|
*dst++ = *srcI++; // real sample, interleave
|
|
|
|
*dst++ = *srcQ++; // imag
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void AudioAnalyzeFFT4096_IQEM_F32::update(void) {
|
|
|
|
audio_block_f32_t *block_i,*block_q;
|
|
|
|
int i, ii;
|
|
|
|
|
|
|
|
block_i = receiveReadOnly_f32(0);
|
|
|
|
if (!block_i) return;
|
|
|
|
block_q = receiveReadOnly_f32(1);
|
|
|
|
if (!block_q) {
|
|
|
|
release(block_i);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// Here with two new blocks of data. These are retained until the FFT
|
|
|
|
// but with new pointers, blocklist_i[] and blocklist_q[].
|
|
|
|
|
|
|
|
uint32_t tt = micros(); Serial.print(state);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
switch (state) {
|
|
|
|
case 0:
|
|
|
|
blocklist_i[0] = block_i; blocklist_q[0] = block_q; // Copy 2 ptrs
|
|
|
|
state = 1;
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
blocklist_i[1] = block_i; blocklist_q[1] = block_q;
|
|
|
|
state = 2;
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
blocklist_i[2] = block_i; blocklist_q[2] = block_q;
|
|
|
|
state = 3;
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
blocklist_i[3] = block_i; blocklist_q[3] = block_q;
|
|
|
|
state = 4;
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
blocklist_i[4] = block_i; blocklist_q[4] = block_q;
|
|
|
|
state = 5;
|
|
|
|
break;
|
|
|
|
case 5:
|
|
|
|
blocklist_i[5] = block_i; blocklist_q[5] = block_q;
|
|
|
|
state = 6;
|
|
|
|
break;
|
|
|
|
case 6:
|
|
|
|
blocklist_i[6] = block_i; blocklist_q[6] = block_q;
|
|
|
|
state = 7;
|
|
|
|
break;
|
|
|
|
case 7:
|
|
|
|
blocklist_i[7] = block_i; blocklist_q[7] = block_q;
|
|
|
|
state = 8;
|
|
|
|
break;
|
|
|
|
case 8:
|
|
|
|
blocklist_i[8] = block_i; blocklist_q[8] = block_q;
|
|
|
|
state = 9;
|
|
|
|
break;
|
|
|
|
case 9:
|
|
|
|
blocklist_i[9] = block_i; blocklist_q[9] = block_q;
|
|
|
|
state = 10;
|
|
|
|
break;
|
|
|
|
case 10:
|
|
|
|
blocklist_i[10] = block_i; blocklist_q[10] = block_q;
|
|
|
|
state = 11;
|
|
|
|
break;
|
|
|
|
case 11:
|
|
|
|
blocklist_i[11] = block_i; blocklist_q[11] = block_q;
|
|
|
|
state = 12;
|
|
|
|
break;
|
|
|
|
case 12:
|
|
|
|
blocklist_i[12] = block_i; blocklist_q[12] = block_q;
|
|
|
|
state = 13;
|
|
|
|
break;
|
|
|
|
case 13:
|
|
|
|
blocklist_i[13] = block_i; blocklist_q[13] = block_q;
|
|
|
|
state = 14;
|
|
|
|
break;
|
|
|
|
case 14:
|
|
|
|
blocklist_i[14] = block_i; blocklist_q[14] = block_q;
|
|
|
|
state = 15;
|
|
|
|
break;
|
|
|
|
case 15:
|
|
|
|
blocklist_i[15] = block_i; blocklist_q[15] = block_q;
|
|
|
|
state = 16;
|
|
|
|
break;
|
|
|
|
// ********************************************************
|
|
|
|
// Once things are running, the loop comes back to this point
|
|
|
|
case 16:
|
|
|
|
blocklist_i[16] = block_i; blocklist_q[16] = block_q;
|
|
|
|
|
|
|
|
// Now work on the FFT output data. This was created in case 31.
|
|
|
|
// This next forming of the sumsq[] takes 66 uSec (was 48 uSec with local memory)
|
|
|
|
count++;
|
|
|
|
for (int i = 0; i < 2048; i++) {
|
|
|
|
// Re-arranging the coefficients. These are bin powers (not Volts)
|
|
|
|
// See DD4WH SDR
|
|
|
|
float ss0 = *(pFFT_buffer + 2*i) * *(pFFT_buffer + 2*i) +
|
|
|
|
*(pFFT_buffer + 2*i+1) * *(pFFT_buffer + 2*i+1);
|
|
|
|
float ss1 = *(pFFT_buffer + 2*(i+2048)) * *(pFFT_buffer + 2*(i+2048)) +
|
|
|
|
*(pFFT_buffer + 2*(i+2048)+1) * *(pFFT_buffer + 2*(i+2048)+1);
|
|
|
|
|
|
|
|
if(!(pSumsq==NULL)) { // We have memory to do averages
|
|
|
|
if(count==1) { // Starting new average
|
|
|
|
*(pSumsq+i+2048) = ss0;
|
|
|
|
*(pSumsq+i) = ss1;
|
|
|
|
}
|
|
|
|
else if (count <= nAverage) { // Adding on to average
|
|
|
|
*(pSumsq+i+2048) += ss0;
|
|
|
|
*(pSumsq+i) += ss1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else // No averaging is used
|
|
|
|
{
|
|
|
|
// Parts of pFFT_buffer are becoming available for
|
|
|
|
// temporary storage, but not all:
|
|
|
|
*(pFFT_buffer+i) = ss0;
|
|
|
|
*(pFFT_buffer+4096+i) = ss1;
|
|
|
|
// Now in pFFT_buffer 0,2047 and 4096,6143
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// sumsq[] is filled. Wait to state==17 to convert to dBFS, etc
|
|
|
|
state = 17;
|
|
|
|
break;
|
|
|
|
case 17:
|
|
|
|
blocklist_i[17] = block_i; blocklist_q[17] = block_q;
|
|
|
|
|
|
|
|
// This state==17 block takes 710 uSec for DBFS, but
|
|
|
|
// only 65 for POWER. DB conversions do not need to be under
|
|
|
|
// this interrupt and POWER output should be used if time is short.
|
|
|
|
if (pSumsq==NULL || count>=nAverage) { // Average is not being done or is finished
|
|
|
|
outputflag = false; // Avoid starting read() during block 17 to 18
|
|
|
|
float inAf = 1.0f/(float)nAverage;
|
|
|
|
for (ii=0; ii < 2048; ii++) {
|
|
|
|
// xAxis, bit 0 left/right; bit 1 low to high
|
|
|
|
if(xAxis & 0X02)
|
|
|
|
i = ii;
|
|
|
|
else
|
|
|
|
i = ii^2048;
|
|
|
|
|
|
|
|
if(xAxis & 0X01)
|
|
|
|
i = (4095 - i);
|
|
|
|
|
|
|
|
if(!(pSumsq==NULL)) { // We have memory to do averages
|
|
|
|
if(outputType==FFT_RMS)
|
|
|
|
*(pOutput+i) = sqrtf(inAf* *(pSumsq+ii));
|
|
|
|
else if(outputType==FFT_POWER)
|
|
|
|
*(pOutput+i) = inAf* *(pSumsq+ii);
|
|
|
|
else if(outputType==FFT_DBFS)
|
|
|
|
*(pOutput+i) = 10.0f*log10f(inAf* *(pSumsq+ii))-66.23f; // Scaled to FS sine wave
|
|
|
|
else
|
|
|
|
*(pOutput+i) = 0.0f;
|
|
|
|
}
|
|
|
|
else { // No averaging
|
|
|
|
if(outputType==FFT_RMS)
|
|
|
|
*(pOutput+i) = sqrtf(*(pFFT_buffer+ii));
|
|
|
|
else if(outputType==FFT_POWER)
|
|
|
|
*(pOutput+i) = *(pFFT_buffer+ii);
|
|
|
|
else if(outputType==FFT_DBFS)
|
|
|
|
*(pOutput+i) = 10.0f*log10f(*(pFFT_buffer+ii))-66.23f;
|
|
|
|
} // End, no averaging
|
|
|
|
} // End of "over all i"
|
|
|
|
} // end of Average is Finished
|
|
|
|
state = 18;
|
|
|
|
break;
|
|
|
|
case 18:
|
|
|
|
blocklist_i[18] = block_i; blocklist_q[18] = block_q;
|
|
|
|
|
|
|
|
// Second half of post-FFT processing. dBFS (log10f) is the big user of time.
|
|
|
|
if (pSumsq==NULL || count>=nAverage) { // Average is finished
|
|
|
|
|
|
|
|
Serial.println(count);
|
|
|
|
|
|
|
|
count = 0; // CHECK WHERE IS count++ ??? <<<<<<<<<<<<<<
|
|
|
|
float inAf = 1.0f/(float)nAverage;
|
|
|
|
// ii is the index to data source, i is for data output
|
|
|
|
for (int ii=2048; ii < 4096; ii++) {
|
|
|
|
// xAxis, bit 0 left/right; bit 1 low to high
|
|
|
|
if(xAxis & 0X02)
|
|
|
|
i = ii;
|
|
|
|
else
|
|
|
|
i = ii^2048;
|
|
|
|
|
|
|
|
if(xAxis & 0X01)
|
|
|
|
i = (4095 - i);
|
|
|
|
|
|
|
|
if(!(pSumsq==NULL)) { // We have memory to do averages
|
|
|
|
if(outputType==FFT_RMS)
|
|
|
|
*(pOutput+i) = sqrtf(inAf* *(pSumsq+ii));
|
|
|
|
else if(outputType==FFT_POWER)
|
|
|
|
*(pOutput+i) = inAf* *(pSumsq+ii);
|
|
|
|
else if(outputType==FFT_DBFS)
|
|
|
|
*(pOutput+i) = 10.0f*log10f(inAf* *(pSumsq+ii))-66.23f; // Scaled to FS sine wave
|
|
|
|
else
|
|
|
|
*(pOutput+i) = 0.0f;
|
|
|
|
}
|
|
|
|
else { // No averaging being done
|
|
|
|
if(outputType==FFT_RMS)
|
|
|
|
*(pOutput+i) = sqrtf(*(pFFT_buffer+ii+2048));
|
|
|
|
else if(outputType==FFT_POWER)
|
|
|
|
*(pOutput+i) = *(pFFT_buffer+ii+2048);
|
|
|
|
else if(outputType==FFT_DBFS)
|
|
|
|
*(pOutput+i) = 10.0f*log10f(*(pFFT_buffer+ii+2048))-66.23f;
|
|
|
|
else
|
|
|
|
*(pOutput+i) = 0.0f;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
outputflag = true;
|
|
|
|
} // end of Average is Finished
|
|
|
|
state = 19;
|
|
|
|
break;
|
|
|
|
case 19:
|
|
|
|
blocklist_i[19] = block_i; blocklist_q[19] = block_q;
|
|
|
|
state = 20;
|
|
|
|
break;
|
|
|
|
case 20:
|
|
|
|
blocklist_i[20] = block_i; blocklist_q[20] = block_q;
|
|
|
|
state = 21;
|
|
|
|
break;
|
|
|
|
case 21:
|
|
|
|
blocklist_i[21] = block_i; blocklist_q[21] = block_q;
|
|
|
|
state = 22;
|
|
|
|
break;
|
|
|
|
case 22:
|
|
|
|
blocklist_i[22] = block_i; blocklist_q[22] = block_q;
|
|
|
|
state = 23;
|
|
|
|
break;
|
|
|
|
case 23:
|
|
|
|
blocklist_i[23] = block_i; blocklist_q[23] = block_q;
|
|
|
|
state = 24;
|
|
|
|
break;
|
|
|
|
case 24:
|
|
|
|
blocklist_i[24] = block_i; blocklist_q[24] = block_q;
|
|
|
|
state = 25;
|
|
|
|
break;
|
|
|
|
case 25:
|
|
|
|
blocklist_i[25] = block_i; blocklist_q[25] = block_q;
|
|
|
|
state = 26;
|
|
|
|
break;
|
|
|
|
case 26:
|
|
|
|
blocklist_i[26] = block_i; blocklist_q[26] = block_q;
|
|
|
|
state = 27;
|
|
|
|
break;
|
|
|
|
case 27:
|
|
|
|
blocklist_i[27] = block_i; blocklist_q[27] = block_q;
|
|
|
|
state = 28;
|
|
|
|
break;
|
|
|
|
case 28:
|
|
|
|
blocklist_i[28] = block_i; blocklist_q[28] = block_q;
|
|
|
|
state = 29;
|
|
|
|
break;
|
|
|
|
case 29:
|
|
|
|
blocklist_i[29] = block_i; blocklist_q[29] = block_q;
|
|
|
|
state = 30;
|
|
|
|
break;
|
|
|
|
case 30:
|
|
|
|
blocklist_i[30] = block_i; blocklist_q[30] = block_q;
|
|
|
|
state = 31;
|
|
|
|
break;
|
|
|
|
case 31:
|
|
|
|
blocklist_i[31] = block_i; blocklist_q[31] = block_q;
|
|
|
|
|
|
|
|
// Copy 8192 data to fft_buffer This state==31 takes about 530 uSec, including the FFT.
|
|
|
|
// i & q interleaved data.
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x000, blocklist_i[0]->data, blocklist_q[0]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x100, blocklist_i[1]->data, blocklist_q[1]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x200, blocklist_i[2]->data, blocklist_q[2]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x300, blocklist_i[3]->data, blocklist_q[3]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x400, blocklist_i[4]->data, blocklist_q[4]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x500, blocklist_i[5]->data, blocklist_q[5]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x600, blocklist_i[6]->data, blocklist_q[6]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x700, blocklist_i[7]->data, blocklist_q[7]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x800, blocklist_i[8]->data, blocklist_q[8]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x900, blocklist_i[9]->data, blocklist_q[9]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0xA00, blocklist_i[10]->data, blocklist_q[10]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0xB00, blocklist_i[11]->data, blocklist_q[11]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0xC00, blocklist_i[12]->data, blocklist_q[12]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0xD00, blocklist_i[13]->data, blocklist_q[13]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0xE00, blocklist_i[14]->data, blocklist_q[14]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0xF00, blocklist_i[15]->data, blocklist_q[15]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1000, blocklist_i[16]->data, blocklist_q[16]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1100, blocklist_i[17]->data, blocklist_q[17]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1200, blocklist_i[18]->data, blocklist_q[18]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1300, blocklist_i[19]->data, blocklist_q[19]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1400, blocklist_i[20]->data, blocklist_q[20]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1500, blocklist_i[21]->data, blocklist_q[21]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1600, blocklist_i[22]->data, blocklist_q[22]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1700, blocklist_i[23]->data, blocklist_q[23]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1800, blocklist_i[24]->data, blocklist_q[24]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1900, blocklist_i[25]->data, blocklist_q[25]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1A00, blocklist_i[26]->data, blocklist_q[26]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1B00, blocklist_i[27]->data, blocklist_q[27]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1C00, blocklist_i[28]->data, blocklist_q[28]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1D00, blocklist_i[29]->data, blocklist_q[29]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1E00, blocklist_i[30]->data, blocklist_q[30]->data);
|
|
|
|
copy_to_fft_buffer1(pFFT_buffer+0x1F00, blocklist_i[31]->data, blocklist_q[31]->data);
|
|
|
|
|
|
|
|
|
|
|
|
// Apply the window function, if any, to the time series. Half size window buffer.
|
|
|
|
if(wNum!=NULL && pWindow)
|
|
|
|
{
|
|
|
|
for (int i=0; i < 2048; i++) {
|
|
|
|
*(pFFT_buffer + 2*i) *= *(pWindow + i); // real
|
|
|
|
*(pFFT_buffer + 2*i+1) *= *(pWindow + i); // imag
|
|
|
|
}
|
|
|
|
for (int i=0; i < 2048; i++) { // Second half
|
|
|
|
*(pFFT_buffer + 8191 - 2*i) *= *(pWindow + i);
|
|
|
|
*(pFFT_buffer + 8190 - 2*i) *= *(pWindow + i);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Teensyduino core for T4.x supports arm_cfft_f32
|
|
|
|
// arm_cfft_f32 (const arm_cfft_instance_f32 *S, float32_t *p1,
|
|
|
|
// uint8_t ifftFlag, uint8_t bitReverseFlag)
|
|
|
|
// I & O are real/imag interleaved in 8192-float point array p1.
|
|
|
|
arm_cfft_f32(&Sfft, pFFT_buffer, 0, 1);
|
|
|
|
|
|
|
|
release(blocklist_i[0]); release(blocklist_q[0]);
|
|
|
|
release(blocklist_i[1]); release(blocklist_q[1]);
|
|
|
|
release(blocklist_i[2]); release(blocklist_q[2]);
|
|
|
|
release(blocklist_i[3]); release(blocklist_q[3]);
|
|
|
|
release(blocklist_i[4]); release(blocklist_q[4]);
|
|
|
|
release(blocklist_i[5]); release(blocklist_q[5]);
|
|
|
|
release(blocklist_i[6]); release(blocklist_q[6]);
|
|
|
|
release(blocklist_i[7]); release(blocklist_q[7]);
|
|
|
|
release(blocklist_i[8]); release(blocklist_q[8]);
|
|
|
|
release(blocklist_i[9]); release(blocklist_q[9]);
|
|
|
|
release(blocklist_i[10]); release(blocklist_q[10]);
|
|
|
|
release(blocklist_i[11]); release(blocklist_q[11]);
|
|
|
|
release(blocklist_i[12]); release(blocklist_q[12]);
|
|
|
|
release(blocklist_i[13]); release(blocklist_q[13]);
|
|
|
|
release(blocklist_i[14]); release(blocklist_q[14]);
|
|
|
|
release(blocklist_i[15]); release(blocklist_q[15]);
|
|
|
|
|
|
|
|
blocklist_i[0] = blocklist_i[16];
|
|
|
|
blocklist_i[1] = blocklist_i[17];
|
|
|
|
blocklist_i[2] = blocklist_i[18];
|
|
|
|
blocklist_i[3] = blocklist_i[19];
|
|
|
|
blocklist_i[4] = blocklist_i[20];
|
|
|
|
blocklist_i[5] = blocklist_i[21];
|
|
|
|
blocklist_i[6] = blocklist_i[22];
|
|
|
|
blocklist_i[7] = blocklist_i[23];
|
|
|
|
blocklist_i[8] = blocklist_i[24];
|
|
|
|
blocklist_i[9] = blocklist_i[25];
|
|
|
|
blocklist_i[10] = blocklist_i[26];
|
|
|
|
blocklist_i[11] = blocklist_i[27];
|
|
|
|
blocklist_i[12] = blocklist_i[28];
|
|
|
|
blocklist_i[13] = blocklist_i[29];
|
|
|
|
blocklist_i[14] = blocklist_i[30];
|
|
|
|
blocklist_i[15] = blocklist_i[31];
|
|
|
|
|
|
|
|
blocklist_q[0] = blocklist_q[16];
|
|
|
|
blocklist_q[1] = blocklist_q[17];
|
|
|
|
blocklist_q[2] = blocklist_q[18];
|
|
|
|
blocklist_q[3] = blocklist_q[19];
|
|
|
|
blocklist_q[4] = blocklist_q[20];
|
|
|
|
blocklist_q[5] = blocklist_q[21];
|
|
|
|
blocklist_q[6] = blocklist_q[22];
|
|
|
|
blocklist_q[7] = blocklist_q[23];
|
|
|
|
blocklist_q[8] = blocklist_q[24];
|
|
|
|
blocklist_q[9] = blocklist_q[25];
|
|
|
|
blocklist_q[10] = blocklist_q[26];
|
|
|
|
blocklist_q[11] = blocklist_q[27];
|
|
|
|
blocklist_q[12] = blocklist_q[28];
|
|
|
|
blocklist_q[13] = blocklist_q[29];
|
|
|
|
blocklist_q[14] = blocklist_q[30];
|
|
|
|
blocklist_q[15] = blocklist_q[31];
|
|
|
|
|
|
|
|
state = 16;
|
|
|
|
break; // From case 31
|
|
|
|
} // End of switch & case 31
|
|
|
|
|
|
|
|
|
|
|
|
Serial.print(","); Serial.println(micros() - tt);
|
|
|
|
|
|
|
|
} // End update()
|
|
|
|
// End, if Teensy 4.x
|
|
|
|
#endif
|