You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
OpenAudio_ArduinoLibrary/analyze_fft4096_iqem_F32.cpp

439 lines
17 KiB

/*
* analyze_fft4096_iq_F32.cpp Assembled by Bob Larkin 18 Feb 2022
*
* External Memory **** BETA TEST VERSION - NOT FULLY TESTED **** <<<<<<<<<<
*
* This class is Teensy 4.x ONLY.
* F32 Bolocks are always 128 floats, and any data rate is OK.
*
* Converted to F32 floating point input and also extended
* for complex I and Q inputs
* * Adapted all I/O to be F32 floating point for OpenAudio_ArduinoLibrary
* * Future: Add outputs for I & Q FFT x2 for overlapped FFT
* * Windowing None, Hann, Kaiser and Blackman-Harris.
*
* Conversion Copyright (c) 2022 Bob Larkin
* Same MIT license as PJRC:
*
* Audio Library for Teensy 3.X
* Copyright (c) 2014, Paul Stoffregen, paul@pjrc.com
*
* Development of this audio library was funded by PJRC.COM, LLC by sales of
* Teensy and Audio Adaptor boards. Please support PJRC's efforts to develop
* open source software by purchasing Teensy or other PJRC products.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// *************** TEENSY 4.X ONLY ****************
#if defined(__IMXRT1062__)
#include <Arduino.h>
#include "analyze_fft4096_iqem_F32.h"
// Note: Suppports block size of 128 only. Very "built in."
// Move audio data from audio_block_f32_t to the interleaved FFT instance buffer.
static void copy_to_fft_buffer1(void *destination, const void *sourceI, const void *sourceQ) {
const float *srcI = (const float *)sourceI;
const float *srcQ = (const float *)sourceQ;
float *dst = (float *)destination; // part of fft_buffer array. 256 floats per call
for (int i=0; i < 128; i++) {
*dst++ = *srcI++; // real sample, interleave
*dst++ = *srcQ++; // imag
}
}
void AudioAnalyzeFFT4096_IQEM_F32::update(void) {
audio_block_f32_t *block_i,*block_q;
int i, ii;
block_i = receiveReadOnly_f32(0);
if (!block_i) return;
block_q = receiveReadOnly_f32(1);
if (!block_q) {
release(block_i);
return;
}
// Here with two new blocks of data. These are retained until the FFT
// but with new pointers, blocklist_i[] and blocklist_q[].
uint32_t tt = micros(); Serial.print(state);
switch (state) {
case 0:
blocklist_i[0] = block_i; blocklist_q[0] = block_q; // Copy 2 ptrs
state = 1;
break;
case 1:
blocklist_i[1] = block_i; blocklist_q[1] = block_q;
state = 2;
break;
case 2:
blocklist_i[2] = block_i; blocklist_q[2] = block_q;
state = 3;
break;
case 3:
blocklist_i[3] = block_i; blocklist_q[3] = block_q;
state = 4;
break;
case 4:
blocklist_i[4] = block_i; blocklist_q[4] = block_q;
state = 5;
break;
case 5:
blocklist_i[5] = block_i; blocklist_q[5] = block_q;
state = 6;
break;
case 6:
blocklist_i[6] = block_i; blocklist_q[6] = block_q;
state = 7;
break;
case 7:
blocklist_i[7] = block_i; blocklist_q[7] = block_q;
state = 8;
break;
case 8:
blocklist_i[8] = block_i; blocklist_q[8] = block_q;
state = 9;
break;
case 9:
blocklist_i[9] = block_i; blocklist_q[9] = block_q;
state = 10;
break;
case 10:
blocklist_i[10] = block_i; blocklist_q[10] = block_q;
state = 11;
break;
case 11:
blocklist_i[11] = block_i; blocklist_q[11] = block_q;
state = 12;
break;
case 12:
blocklist_i[12] = block_i; blocklist_q[12] = block_q;
state = 13;
break;
case 13:
blocklist_i[13] = block_i; blocklist_q[13] = block_q;
state = 14;
break;
case 14:
blocklist_i[14] = block_i; blocklist_q[14] = block_q;
state = 15;
break;
case 15:
blocklist_i[15] = block_i; blocklist_q[15] = block_q;
state = 16;
break;
// ********************************************************
// Once things are running, the loop comes back to this point
case 16:
blocklist_i[16] = block_i; blocklist_q[16] = block_q;
// Now work on the FFT output data. This was created in case 31.
// This next forming of the sumsq[] takes 66 uSec (was 48 uSec with local memory)
count++;
for (int i = 0; i < 2048; i++) {
// Re-arranging the coefficients. These are bin powers (not Volts)
// See DD4WH SDR
float ss0 = *(pFFT_buffer + 2*i) * *(pFFT_buffer + 2*i) +
*(pFFT_buffer + 2*i+1) * *(pFFT_buffer + 2*i+1);
float ss1 = *(pFFT_buffer + 2*(i+2048)) * *(pFFT_buffer + 2*(i+2048)) +
*(pFFT_buffer + 2*(i+2048)+1) * *(pFFT_buffer + 2*(i+2048)+1);
if(!(pSumsq==NULL)) { // We have memory to do averages
if(count==1) { // Starting new average
*(pSumsq+i+2048) = ss0;
*(pSumsq+i) = ss1;
}
else if (count <= nAverage) { // Adding on to average
*(pSumsq+i+2048) += ss0;
*(pSumsq+i) += ss1;
}
}
else // No averaging is used
{
// Parts of pFFT_buffer are becoming available for
// temporary storage, but not all:
*(pFFT_buffer+i) = ss0;
*(pFFT_buffer+4096+i) = ss1;
// Now in pFFT_buffer 0,2047 and 4096,6143
}
}
// sumsq[] is filled. Wait to state==17 to convert to dBFS, etc
state = 17;
break;
case 17:
blocklist_i[17] = block_i; blocklist_q[17] = block_q;
// This state==17 block takes 710 uSec for DBFS, but
// only 65 for POWER. DB conversions do not need to be under
// this interrupt and POWER output should be used if time is short.
if (pSumsq==NULL || count>=nAverage) { // Average is not being done or is finished
outputflag = false; // Avoid starting read() during block 17 to 18
float inAf = 1.0f/(float)nAverage;
for (ii=0; ii < 2048; ii++) {
// xAxis, bit 0 left/right; bit 1 low to high
if(xAxis & 0X02)
i = ii;
else
i = ii^2048;
if(xAxis & 0X01)
i = (4095 - i);
if(!(pSumsq==NULL)) { // We have memory to do averages
if(outputType==FFT_RMS)
*(pOutput+i) = sqrtf(inAf* *(pSumsq+ii));
else if(outputType==FFT_POWER)
*(pOutput+i) = inAf* *(pSumsq+ii);
else if(outputType==FFT_DBFS)
*(pOutput+i) = 10.0f*log10f(inAf* *(pSumsq+ii))-66.23f; // Scaled to FS sine wave
else
*(pOutput+i) = 0.0f;
}
else { // No averaging
if(outputType==FFT_RMS)
*(pOutput+i) = sqrtf(*(pFFT_buffer+ii));
else if(outputType==FFT_POWER)
*(pOutput+i) = *(pFFT_buffer+ii);
else if(outputType==FFT_DBFS)
*(pOutput+i) = 10.0f*log10f(*(pFFT_buffer+ii))-66.23f;
} // End, no averaging
} // End of "over all i"
} // end of Average is Finished
state = 18;
break;
case 18:
blocklist_i[18] = block_i; blocklist_q[18] = block_q;
// Second half of post-FFT processing. dBFS (log10f) is the big user of time.
if (pSumsq==NULL || count>=nAverage) { // Average is finished
Serial.println(count);
count = 0; // CHECK WHERE IS count++ ??? <<<<<<<<<<<<<<
float inAf = 1.0f/(float)nAverage;
// ii is the index to data source, i is for data output
for (int ii=2048; ii < 4096; ii++) {
// xAxis, bit 0 left/right; bit 1 low to high
if(xAxis & 0X02)
i = ii;
else
i = ii^2048;
if(xAxis & 0X01)
i = (4095 - i);
if(!(pSumsq==NULL)) { // We have memory to do averages
if(outputType==FFT_RMS)
*(pOutput+i) = sqrtf(inAf* *(pSumsq+ii));
else if(outputType==FFT_POWER)
*(pOutput+i) = inAf* *(pSumsq+ii);
else if(outputType==FFT_DBFS)
*(pOutput+i) = 10.0f*log10f(inAf* *(pSumsq+ii))-66.23f; // Scaled to FS sine wave
else
*(pOutput+i) = 0.0f;
}
else { // No averaging being done
if(outputType==FFT_RMS)
*(pOutput+i) = sqrtf(*(pFFT_buffer+ii+2048));
else if(outputType==FFT_POWER)
*(pOutput+i) = *(pFFT_buffer+ii+2048);
else if(outputType==FFT_DBFS)
*(pOutput+i) = 10.0f*log10f(*(pFFT_buffer+ii+2048))-66.23f;
else
*(pOutput+i) = 0.0f;
}
}
outputflag = true;
} // end of Average is Finished
state = 19;
break;
case 19:
blocklist_i[19] = block_i; blocklist_q[19] = block_q;
state = 20;
break;
case 20:
blocklist_i[20] = block_i; blocklist_q[20] = block_q;
state = 21;
break;
case 21:
blocklist_i[21] = block_i; blocklist_q[21] = block_q;
state = 22;
break;
case 22:
blocklist_i[22] = block_i; blocklist_q[22] = block_q;
state = 23;
break;
case 23:
blocklist_i[23] = block_i; blocklist_q[23] = block_q;
state = 24;
break;
case 24:
blocklist_i[24] = block_i; blocklist_q[24] = block_q;
state = 25;
break;
case 25:
blocklist_i[25] = block_i; blocklist_q[25] = block_q;
state = 26;
break;
case 26:
blocklist_i[26] = block_i; blocklist_q[26] = block_q;
state = 27;
break;
case 27:
blocklist_i[27] = block_i; blocklist_q[27] = block_q;
state = 28;
break;
case 28:
blocklist_i[28] = block_i; blocklist_q[28] = block_q;
state = 29;
break;
case 29:
blocklist_i[29] = block_i; blocklist_q[29] = block_q;
state = 30;
break;
case 30:
blocklist_i[30] = block_i; blocklist_q[30] = block_q;
state = 31;
break;
case 31:
blocklist_i[31] = block_i; blocklist_q[31] = block_q;
// Copy 8192 data to fft_buffer This state==31 takes about 530 uSec, including the FFT.
// i & q interleaved data.
copy_to_fft_buffer1(pFFT_buffer+0x000, blocklist_i[0]->data, blocklist_q[0]->data);
copy_to_fft_buffer1(pFFT_buffer+0x100, blocklist_i[1]->data, blocklist_q[1]->data);
copy_to_fft_buffer1(pFFT_buffer+0x200, blocklist_i[2]->data, blocklist_q[2]->data);
copy_to_fft_buffer1(pFFT_buffer+0x300, blocklist_i[3]->data, blocklist_q[3]->data);
copy_to_fft_buffer1(pFFT_buffer+0x400, blocklist_i[4]->data, blocklist_q[4]->data);
copy_to_fft_buffer1(pFFT_buffer+0x500, blocklist_i[5]->data, blocklist_q[5]->data);
copy_to_fft_buffer1(pFFT_buffer+0x600, blocklist_i[6]->data, blocklist_q[6]->data);
copy_to_fft_buffer1(pFFT_buffer+0x700, blocklist_i[7]->data, blocklist_q[7]->data);
copy_to_fft_buffer1(pFFT_buffer+0x800, blocklist_i[8]->data, blocklist_q[8]->data);
copy_to_fft_buffer1(pFFT_buffer+0x900, blocklist_i[9]->data, blocklist_q[9]->data);
copy_to_fft_buffer1(pFFT_buffer+0xA00, blocklist_i[10]->data, blocklist_q[10]->data);
copy_to_fft_buffer1(pFFT_buffer+0xB00, blocklist_i[11]->data, blocklist_q[11]->data);
copy_to_fft_buffer1(pFFT_buffer+0xC00, blocklist_i[12]->data, blocklist_q[12]->data);
copy_to_fft_buffer1(pFFT_buffer+0xD00, blocklist_i[13]->data, blocklist_q[13]->data);
copy_to_fft_buffer1(pFFT_buffer+0xE00, blocklist_i[14]->data, blocklist_q[14]->data);
copy_to_fft_buffer1(pFFT_buffer+0xF00, blocklist_i[15]->data, blocklist_q[15]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1000, blocklist_i[16]->data, blocklist_q[16]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1100, blocklist_i[17]->data, blocklist_q[17]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1200, blocklist_i[18]->data, blocklist_q[18]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1300, blocklist_i[19]->data, blocklist_q[19]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1400, blocklist_i[20]->data, blocklist_q[20]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1500, blocklist_i[21]->data, blocklist_q[21]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1600, blocklist_i[22]->data, blocklist_q[22]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1700, blocklist_i[23]->data, blocklist_q[23]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1800, blocklist_i[24]->data, blocklist_q[24]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1900, blocklist_i[25]->data, blocklist_q[25]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1A00, blocklist_i[26]->data, blocklist_q[26]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1B00, blocklist_i[27]->data, blocklist_q[27]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1C00, blocklist_i[28]->data, blocklist_q[28]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1D00, blocklist_i[29]->data, blocklist_q[29]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1E00, blocklist_i[30]->data, blocklist_q[30]->data);
copy_to_fft_buffer1(pFFT_buffer+0x1F00, blocklist_i[31]->data, blocklist_q[31]->data);
// Apply the window function, if any, to the time series. Half size window buffer.
if(wNum!=NULL && pWindow)
{
for (int i=0; i < 2048; i++) {
*(pFFT_buffer + 2*i) *= *(pWindow + i); // real
*(pFFT_buffer + 2*i+1) *= *(pWindow + i); // imag
}
for (int i=0; i < 2048; i++) { // Second half
*(pFFT_buffer + 8191 - 2*i) *= *(pWindow + i);
*(pFFT_buffer + 8190 - 2*i) *= *(pWindow + i);
}
}
// Teensyduino core for T4.x supports arm_cfft_f32
// arm_cfft_f32 (const arm_cfft_instance_f32 *S, float32_t *p1,
// uint8_t ifftFlag, uint8_t bitReverseFlag)
// I & O are real/imag interleaved in 8192-float point array p1.
arm_cfft_f32(&Sfft, pFFT_buffer, 0, 1);
release(blocklist_i[0]); release(blocklist_q[0]);
release(blocklist_i[1]); release(blocklist_q[1]);
release(blocklist_i[2]); release(blocklist_q[2]);
release(blocklist_i[3]); release(blocklist_q[3]);
release(blocklist_i[4]); release(blocklist_q[4]);
release(blocklist_i[5]); release(blocklist_q[5]);
release(blocklist_i[6]); release(blocklist_q[6]);
release(blocklist_i[7]); release(blocklist_q[7]);
release(blocklist_i[8]); release(blocklist_q[8]);
release(blocklist_i[9]); release(blocklist_q[9]);
release(blocklist_i[10]); release(blocklist_q[10]);
release(blocklist_i[11]); release(blocklist_q[11]);
release(blocklist_i[12]); release(blocklist_q[12]);
release(blocklist_i[13]); release(blocklist_q[13]);
release(blocklist_i[14]); release(blocklist_q[14]);
release(blocklist_i[15]); release(blocklist_q[15]);
blocklist_i[0] = blocklist_i[16];
blocklist_i[1] = blocklist_i[17];
blocklist_i[2] = blocklist_i[18];
blocklist_i[3] = blocklist_i[19];
blocklist_i[4] = blocklist_i[20];
blocklist_i[5] = blocklist_i[21];
blocklist_i[6] = blocklist_i[22];
blocklist_i[7] = blocklist_i[23];
blocklist_i[8] = blocklist_i[24];
blocklist_i[9] = blocklist_i[25];
blocklist_i[10] = blocklist_i[26];
blocklist_i[11] = blocklist_i[27];
blocklist_i[12] = blocklist_i[28];
blocklist_i[13] = blocklist_i[29];
blocklist_i[14] = blocklist_i[30];
blocklist_i[15] = blocklist_i[31];
blocklist_q[0] = blocklist_q[16];
blocklist_q[1] = blocklist_q[17];
blocklist_q[2] = blocklist_q[18];
blocklist_q[3] = blocklist_q[19];
blocklist_q[4] = blocklist_q[20];
blocklist_q[5] = blocklist_q[21];
blocklist_q[6] = blocklist_q[22];
blocklist_q[7] = blocklist_q[23];
blocklist_q[8] = blocklist_q[24];
blocklist_q[9] = blocklist_q[25];
blocklist_q[10] = blocklist_q[26];
blocklist_q[11] = blocklist_q[27];
blocklist_q[12] = blocklist_q[28];
blocklist_q[13] = blocklist_q[29];
blocklist_q[14] = blocklist_q[30];
blocklist_q[15] = blocklist_q[31];
state = 16;
break; // From case 31
} // End of switch & case 31
Serial.print(","); Serial.println(micros() - tt);
} // End update()
// End, if Teensy 4.x
#endif