You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
OpenAudio_ArduinoLibrary/output_spdif3_f32.cpp

309 lines
9.6 KiB

/* Hardware-SPDIF for Teensy 4
* Copyright (c) 2019, Frank Bösing, f.boesing@gmx.de
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice, development funding notice, and this permission
* notice shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
http://www.hardwarebook.info/S/PDIF
https://www.mikrocontroller.net/articles/S/PDIF
https://en.wikipedia.org/wiki/S/PDIF
*/
#include <Arduino.h>
#include "output_spdif3_f32.h"
#if defined(__IMXRT1062__)
#include "utility/imxrt_hw.h"
#include "memcpy_audio.h"
#include <math.h>
// TODO: convert within update() instead of isr(), into buffer
static inline int32_t f32_to_i24(float32_t f) {
const float32_t fullscale = (1LL << 23) - 1;
if (f > 1.0) return fullscale;
if (f < -1.0) return -fullscale;
return (int32_t)(f * fullscale);
}
audio_block_f32_t * AudioOutputSPDIF3_F32::block_left_1st = nullptr;
audio_block_f32_t * AudioOutputSPDIF3_F32::block_right_1st = nullptr;
audio_block_f32_t * AudioOutputSPDIF3_F32::block_left_2nd = nullptr;
audio_block_f32_t * AudioOutputSPDIF3_F32::block_right_2nd = nullptr;
bool AudioOutputSPDIF3_F32::update_responsibility = false;
float AudioOutputSPDIF3_F32::sample_rate_Hz = AUDIO_SAMPLE_RATE_EXACT;
DMAChannel AudioOutputSPDIF3_F32::dma(false);
DMAMEM __attribute__((aligned(32)))
static int32_t SPDIF_tx_buffer[AUDIO_BLOCK_SAMPLES * 4];
DMAMEM __attribute__((aligned(32)))
audio_block_f32_t AudioOutputSPDIF3_F32::block_silent;
#define SPDIF_DPLL_GAIN24 0
#define SPDIF_DPLL_GAIN16 1
#define SPDIF_DPLL_GAIN12 2
#define SPDIF_DPLL_GAIN8 3
#define SPDIF_DPLL_GAIN6 4
#define SPDIF_DPLL_GAIN4 5
#define SPDIF_DPLL_GAIN3 6
#define SPDIF_DPLL_GAIN1 7
#define SPDIF_DPLL_GAIN SPDIF_DPLL_GAIN8 //Actual Gain
static const uint8_t spdif_gain[8] = {24, 16, 12, 8, 6, 4, 3, 1};
FLASHMEM
void AudioOutputSPDIF3_F32::begin(void)
{
dma.begin(true); // Allocate the DMA channel first
block_left_1st = nullptr;
block_right_1st = nullptr;
memset(&block_silent, 0, sizeof(block_silent));
config_spdif3(sample_rate_Hz);
const int nbytes_mlno = 2 * 4; // 8 Bytes per minor loop
dma.TCD->SADDR = SPDIF_tx_buffer;
dma.TCD->SOFF = 4;
dma.TCD->ATTR = DMA_TCD_ATTR_SSIZE(2) | DMA_TCD_ATTR_DSIZE(2);
dma.TCD->NBYTES_MLNO = DMA_TCD_NBYTES_MLOFFYES_NBYTES(nbytes_mlno) | DMA_TCD_NBYTES_DMLOE |
DMA_TCD_NBYTES_MLOFFYES_MLOFF(-8);
dma.TCD->SLAST = -sizeof(SPDIF_tx_buffer);
dma.TCD->DADDR = &SPDIF_STL;
dma.TCD->DOFF = 4;
dma.TCD->DLASTSGA = -8;
//dma.TCD->ATTR_DST = ((31 - __builtin_clz(8)) << 3);
dma.TCD->CITER_ELINKNO = sizeof(SPDIF_tx_buffer) / nbytes_mlno;
dma.TCD->BITER_ELINKNO = sizeof(SPDIF_tx_buffer) / nbytes_mlno;
dma.TCD->CSR = DMA_TCD_CSR_INTHALF | DMA_TCD_CSR_INTMAJOR;
dma.triggerAtHardwareEvent(DMAMUX_SOURCE_SPDIF_TX);
update_responsibility = update_setup();
dma.enable();
dma.attachInterrupt(isr);
CORE_PIN14_CONFIG = 3; //3:SPDIF_OUT
SPDIF_SCR |= SPDIF_SCR_DMA_TX_EN;
SPDIF_STC |= SPDIF_STC_TX_ALL_CLK_EN;
// pinMode(13, OUTPUT);
}
void AudioOutputSPDIF3_F32::isr(void)
{
const float32_t *src_left, *src_right;
const int32_t *end;
int32_t *dest;
audio_block_f32_t *block_left, *block_right;
uint32_t saddr;
saddr = (uint32_t)(dma.TCD->SADDR);
dma.clearInterrupt();
if (saddr < (uint32_t)SPDIF_tx_buffer + sizeof(SPDIF_tx_buffer) / 2) {
// DMA is transmitting the first half of the buffer
// so we must fill the second half
dest = SPDIF_tx_buffer + AUDIO_BLOCK_SAMPLES*2;
end = SPDIF_tx_buffer + AUDIO_BLOCK_SAMPLES*4;
} else {
// DMA is transmitting the second half of the buffer
// so we must fill the first half
dest = SPDIF_tx_buffer;
end = SPDIF_tx_buffer + AUDIO_BLOCK_SAMPLES*2;
}
block_left = block_left_1st;
if (!block_left) block_left = &block_silent;
block_right = block_right_1st;
if (!block_right) block_right = &block_silent;
src_left = (const float32_t *)(block_left->data);
src_right = (const float32_t *)(block_right->data);
do {
#if IMXRT_CACHE_ENABLED >= 2
SCB_CACHE_DCCIMVAC = (uintptr_t) dest;
asm volatile("dsb");
#endif
*dest++ = f32_to_i24(*src_left++);
*dest++ = f32_to_i24(*src_right++);
*dest++ = f32_to_i24(*src_left++);
*dest++ = f32_to_i24(*src_right++);
*dest++ = f32_to_i24(*src_left++);
*dest++ = f32_to_i24(*src_right++);
*dest++ = f32_to_i24(*src_left++);
*dest++ = f32_to_i24(*src_right++);
} while (dest < end);
if (block_left != &block_silent) {
release(block_left);
block_left_1st = block_left_2nd;
block_left_2nd = nullptr;
}
if (block_right != &block_silent) {
release(block_right);
block_right_1st = block_right_2nd;
block_right_2nd = nullptr;
}
if (update_responsibility) update_all();
//digitalWriteFast(13,!digitalReadFast(13));
}
void AudioOutputSPDIF3_F32::update(void)
{
audio_block_f32_t *block_left, *block_right;
block_left = receiveReadOnly_f32(0); // input 0
block_right = receiveReadOnly_f32(1); // input 1
__disable_irq();
if (block_left) {
if (block_left_1st == nullptr) {
block_left_1st = block_left;
block_left = nullptr;
} else if (block_left_2nd == nullptr) {
block_left_2nd = block_left;
block_left = nullptr;
} else {
audio_block_f32_t *tmp = block_left_1st;
block_left_1st = block_left_2nd;
block_left_2nd = block_left;
block_left = tmp;
}
}
if (block_right) {
if (block_right_1st == nullptr) {
block_right_1st = block_right;
block_right = nullptr;
} else if (block_right_2nd == nullptr) {
block_right_2nd = block_right;
block_right = nullptr;
} else {
audio_block_f32_t *tmp = block_right_1st;
block_right_1st = block_right_2nd;
block_right_2nd = block_right;
block_right = tmp;
}
}
__enable_irq();
if (block_left) {
release(block_left);
}
if (block_right) {
release(block_right);
}
}
void AudioOutputSPDIF3_F32::mute_PCM(const bool mute)
{
if (mute)
SPDIF_SCR |= SPDIF_SCR_VALCTRL;
else
SPDIF_SCR &= ~SPDIF_SCR_VALCTRL;
}
uint32_t AudioOutputSPDIF3_F32::dpll_Gain(void)
{
return spdif_gain[SPDIF_DPLL_GAIN];
}
FLASHMEM
void AudioOutputSPDIF3_F32::config_spdif3(float fs_Hz)
{
delay(1); //WHY IS THIS NEEDED?
uint32_t fs = fs_Hz;
// PLL between 27*24 = 648MHz und 54*24=1296MHz
// n1, n2 choosen for compatibility with I2S (same PLL frequency) :
int n1 = 4; //SAI prescaler 4 => (n1*n2) = multiple of 4
int n2 = 1 + (24000000 * 27) / (fs * 256 * n1);
double C = ((double)fs * 256 * n1 * n2) / 24000000;
int c0 = C;
int c2 = 10000;
int c1 = C * c2 - (c0 * c2);
set_audioClock(c0, c1, c2);
//use new pred/podf values
n1 = 7; //0: divide by 1 (do not use with high input frequencies), 1:/2, 2: /3, 7:/8
n2 = 0; //0: divide by 1, 7: divide by 8
CCM_CCGR5 &= ~CCM_CCGR5_SPDIF(CCM_CCGR_ON); //Clock gate off
CCM_CDCDR = (CCM_CDCDR & ~(CCM_CDCDR_SPDIF0_CLK_SEL_MASK | CCM_CDCDR_SPDIF0_CLK_PRED_MASK | CCM_CDCDR_SPDIF0_CLK_PODF_MASK))
| CCM_CDCDR_SPDIF0_CLK_SEL(0) // 0 PLL4, 1 PLL3 PFD2, 2 PLL5, 3 pll3_sw_clk
| CCM_CDCDR_SPDIF0_CLK_PRED(n1)
| CCM_CDCDR_SPDIF0_CLK_PODF(n2);
CCM_CCGR5 |= CCM_CCGR5_SPDIF(CCM_CCGR_ON); //Clock gate on
if (!(SPDIF_SCR & (SPDIF_SCR_DMA_RX_EN | SPDIF_SCR_DMA_TX_EN))) {
//Serial.print("Reset SPDIF3");
SPDIF_SCR = SPDIF_SCR_SOFT_RESET; //Reset SPDIF
while (SPDIF_SCR & SPDIF_SCR_SOFT_RESET) {;} //Wait for Reset (takes 8 cycles)
} else return;
SPDIF_SCR =
SPDIF_SCR_RXFIFOFULL_SEL(0) | // Full interrupt if at least 1 sample in Rx left and right FIFOs
SPDIF_SCR_RXAUTOSYNC |
SPDIF_SCR_TXAUTOSYNC |
SPDIF_SCR_TXFIFOEMPTY_SEL(2) | // Empty interrupt if at most 8 samples in Tx left and right FIFOs
SPDIF_SCR_TXFIFO_CTRL(1) | // 0:Send zeros 1: normal operation
SPDIF_SCR_VALCTRL | // Outgoing Validity always clear
SPDIF_SCR_TXSEL(5) | // 0:off and output 0, 1:Feed-though SPDIFIN, 5:Tx Normal operation
SPDIF_SCR_USRC_SEL(3);
SPDIF_SRPC =
SPDIF_SRPC_CLKSRC_SEL(1) | //if (DPLL Locked) SPDIF_RxClk else tx_clk (SPDIF0_CLK_ROOT)
SPDIF_SRPC_GAINSEL(SPDIF_DPLL_GAIN);
uint32_t pllclock = (c0 + (float)c1 / c2) * 24000000ULL; //677376000 Hz
uint32_t clock = pllclock / (1 + n1) / (1 + n2);
uint32_t clkdiv = clock / (fs * 64); // 1 .. 128
uint32_t mod = clock % (fs * 64);
if (mod > ((fs * 64) / 2)) clkdiv += 1; //nearest divider
#if 0
Serial.printf("PLL: %d\n", pllclock);
Serial.printf("clock: %d\n", clock);
Serial.printf("clkdiv: %d\n", clkdiv);
#endif
SPDIF_STC =
SPDIF_STC_TXCLK_SOURCE(1) | //tx_clk input (from SPDIF0_CLK_ROOT)
SPDIF_STC_TXCLK_DF(clkdiv - 1);
}
#endif // __IMXRT1062__
#if defined(__MK66FX1M0__) || defined(__MK64FX512__) || defined(__MK20DX256__) || defined(__MKL26Z64__)
// empty code to allow compile (but no sound output) on other Teensy models
void AudioOutputSPDIF3_F32::update(void) { }
void AudioOutputSPDIF3_F32::begin(void) { }
void AudioOutputSPDIF3_F32::mute_PCM(const bool mute) { }
bool AudioOutputSPDIF3_F32::pll_locked(void) { return false; }
#endif