You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
OpenAudio_ArduinoLibrary/AudioEffectCompressor_F32.h

166 lines
7.5 KiB

/*
AudioEffectCompressor
Created: Chip Audette, December 2016
Purpose; Apply dynamic range compression to the audio stream.
Assumes floating-point data.
This processes a single stream fo audio data (ie, it is mono)
MIT License. use at your own risk.
*/
#include <arm_math.h> //ARM DSP extensions. https://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
#include <AudioStream_F32.h>
class AudioEffectCompressor_F32 : public AudioStream_F32
{
public:
//constructor
AudioEffectCompressor_F32(void) : AudioStream_F32(1, inputQueueArray_f32) {
setThresh_dBFS(-20.0f); //default to this threshold
setAttack_sec(0.005f, AUDIO_SAMPLE_RATE); //default to this value
setRelease_sec(0.200f, AUDIO_SAMPLE_RATE); //default to this value
setCompressionRatio(5.0f); //default to this value
setThresh_dBFS(-20.0f); //default to this value
setHPFilterCoeff();
resetStates();
};
//here's the method that does all the work
void update(void) {
//Serial.println("AudioEffectGain_F32: updating."); //for debugging.
audio_block_f32_t *audio_block;
audio_block = AudioStream_F32::receiveWritable_f32();
if (!audio_block) return;
//apply a high-pass filter to get rid of the DC offset
if (use_HP_prefilter) arm_biquad_cascade_df1_f32(&hp_filt_struct, audio_block->data, audio_block->data, audio_block->length);
//apply the pre-gain...a negative gain value will disable
if (pre_gain > 0.0f) arm_scale_f32(audio_block->data, pre_gain, audio_block->data, audio_block->length); //use ARM DSP for speed!
//compute the desired gain
audio_block_f32_t *gain_block = AudioStream_F32::allocate_f32();
calcGain(audio_block, gain_block); //returns through gain_block
//apply the gain...store it back into audio_block
arm_mult_f32(audio_block->data, gain_block->data, audio_block->data, audio_block->length);
///transmit the block and release memory
AudioStream_F32::transmit(audio_block);
AudioStream_F32::release(audio_block);
AudioStream_F32::release(gain_block);
}
void calcGain(audio_block_f32_t *wav_block, audio_block_f32_t *gain_block) {
//calculate the signal power...ie, square the signal: wav_pow = wav.^2
audio_block_f32_t *wav_pow_block = AudioStream_F32::allocate_f32();
arm_mult_f32(wav_block->data, wav_block->data, wav_pow_block->data, wav_block->length);
//loop over each sample
float32_t gain_pow;
for (int i = 0; i < wav_pow_block->length; i++) {
//compute target gain (well, we're actualy calculating gain^2) assuming we want to copress
gain_pow = thresh_pow_FS_wCR / powf(wav_pow_block->data[i], comp_ratio_const);
//if our signal level is below the threshold, don't compress (set target gain to 0dB, which is 1.0)
if (wav_pow_block->data[i] < thresh_pow_FS) gain_pow = 1.0f;
//are we in the attack mode or release mode?
float32_t c = attack_const; //at first, assume that we're in the attack phase
if (gain_pow > prev_gain_pow) c = release_const; //here, we decide if we're really in the release phase
//smooth the gain using the attack or release constants
gain_pow = c*prev_gain_pow + (1.0f-c)*gain_pow;
//take he sqrt of gain^2 so that we simply get the gain
//arm_sqrt_f32(gain_pow, &(gain_block->data[i])); //should use the DSP acceleration, if the right CMSIS library is used
//gain_block->data[i] = __builtin_sqrtf(gain_pow); //seems to give the same speed as the arm_sqrt_f32
gain_block->data[i] = sqrtf(gain_pow); //also give the same speed and is more portable
//save value for the next time through this loop
prev_gain_pow = gain_pow;
}
//free up the memory and return
release(wav_pow_block);
return; //the output here is gain_block
}
//methods to set parameters of this module
void resetStates(void) {
prev_gain_pow = 1.0f;
//initialize the HP filter (it also resets the filter states)
arm_biquad_cascade_df1_init_f32(&hp_filt_struct, hp_nstages, hp_coeff, hp_state);
}
void setPreGain(float g) { pre_gain = g; }
void setPreGain_dB(float gain_dB) { setPreGain(pow(10.0, gain_dB / 20.0)); }
void setCompressionRatio(float cr) {
comp_ratio = max(0.001, cr); //limit to positive values
updateThresholdAndCompRatioConstants();
}
void setAttack_sec(float a, float fs_Hz) {
attack_sec = a;
attack_const = expf(-1.0f / (attack_sec * fs_Hz)); //expf() is much faster than exp()
}
void setRelease_sec(float r, float fs_Hz) {
release_sec = r;
release_const = expf(-1.0f / (release_sec * fs_Hz)); //expf() is much faster than exp()
}
void setThresh_dBFS(float thresh_dBFS) { setThreshPow(pow(10.0, thresh_dBFS / 10.0)); }
void setThreshPow(float t_pow) {
thresh_pow_FS = t_pow;
updateThresholdAndCompRatioConstants();
}
void enableHPFilter(boolean flag) { use_HP_prefilter = flag; };
//methods to return information about this module
float32_t getPreGain_dB(void) { return 20.0 * log10(pre_gain); }
float32_t getAttack_sec(void) { return attack_sec; }
float32_t getRelease_sec(void) { return release_sec; }
float32_t getThresh_dBFS(void) { return 10.0 * log10(thresh_pow_FS); }
float32_t getCompressionRatio(void) { return comp_ratio; }
float32_t getCurrentGain_dB(void) { return 10.0 * log10(prev_gain_pow); }
private:
//state-related variables
audio_block_f32_t *inputQueueArray_f32[1]; //memory pointer for the input to this module
float32_t prev_gain_pow = 1.0; //last gain^2 used
//HP filter state-related variables
arm_biquad_casd_df1_inst_f32 hp_filt_struct;
static const uint8_t hp_nstages = 1;
float32_t hp_coeff[5 * hp_nstages] = {1.0, 0.0, 0.0, 0.0, 0.0}; //no filtering. actual filter coeff set later
float32_t hp_state[4 * hp_nstages];
void setHPFilterCoeff(void) {
//https://www.keil.com/pack/doc/CMSIS/DSP/html/group__BiquadCascadeDF1.html#ga8e73b69a788e681a61bccc8959d823c5
//Use matlab to compute the coeff for HP at 20Hz: [b,a]=butter(2,20/(44100/2),'high'); %assumes fs_Hz = 44100
float32_t b[] = {9.979871156751189e-01, -1.995974231350238e+00, 9.979871156751189e-01}; //from Matlab
float32_t a[] = { 1.000000000000000e+00, -1.995970179642828e+00, 9.959782830576472e-01}; //from Matlab
hp_coeff[0] = b[0]; hp_coeff[1] = b[1]; hp_coeff[2] = b[2]; //here are the matlab "b" coefficients
hp_coeff[3] = -a[1]; hp_coeff[4] = -a[2]; //the DSP needs the "a" terms to have opposite sign vs Matlab
}
//private parameters related to gain calculation
float32_t attack_const, release_const; //used in calcGain(). set by setAttack_sec() and setRelease_sec();
float32_t comp_ratio_const, thresh_pow_FS_wCR; //used in calcGain(); set in updateThresholdAndCompRatioConstants()
void updateThresholdAndCompRatioConstants(void) {
comp_ratio_const = 1.0f-(1.0f / comp_ratio);
thresh_pow_FS_wCR = powf(thresh_pow_FS, comp_ratio_const); //powf() is much faster than pow()
}
//settings
float32_t attack_sec, release_sec;
float32_t thresh_pow_FS = 1.0f; //threshold for compression, relative to digital full scale
float32_t comp_ratio = 1.0; //compression ratio
float32_t pre_gain = -1.0; //gain to apply before the compression. negative value disables
boolean use_HP_prefilter = false;
};