|
|
|
/*
|
|
|
|
* decodeR.ino
|
|
|
|
* Basically the Goba decode.h and .c with minor changes for Teensy
|
|
|
|
* Arduino use along with the floating point OpenAudio_ArduinoLibrary.
|
|
|
|
* Bob Larkin W7PUA, September 2022.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Thank you to Kārlis Goba, YL3JG, https://github.com/kgoba/ft8_lib
|
|
|
|
* and to Charlie Hill, W5BAA, https://github.com/Rotron/Pocket-FT8
|
|
|
|
* as well as the all the contributors to the Joe Taylor WSJT project.
|
|
|
|
* See "The FT4 and FT8 Communication Protocols," Steve Franks, K9AN,
|
|
|
|
* Bill Somerville, G4WJS and Joe Taylor, K1JT, QEX July/August 2020
|
|
|
|
* pp 7-17 as well as https://www.physics.princeton.edu/pulsar/K1JT
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* ***** MIT License ***
|
|
|
|
|
|
|
|
Copyright (c) 2018 Kārlis Goba
|
|
|
|
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
|
|
in the Software without restriction, including without limitation the rights
|
|
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
|
|
|
|
The above copyright notice and this permission notice shall be included in all
|
|
|
|
copies or substantial portions of the Software.
|
|
|
|
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
|
|
SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* CALL
|
|
|
|
int num_candidates = find_sync(export_fft_power,
|
|
|
|
ft8_msg_samples, HIGH_FREQ_INDEX, kCostas_map, kMax_candidates,
|
|
|
|
candidate_list, kMin_score);
|
|
|
|
*/
|
|
|
|
// Localize top N candidates in frequency and time according to their
|
|
|
|
// sync strength (looking at Costas symbols).
|
|
|
|
// We treat and organize the candidate list as a min-heap (empty initially).
|
|
|
|
// 92 368
|
|
|
|
int find_sync(const uint8_t *power, int num_blocks, int num_bins, // 40
|
|
|
|
const uint8_t *sync_map, int num_candidates, Candidate *heap, int min_score) {
|
|
|
|
int heap_size = 0;
|
|
|
|
const uint8_t *p8;
|
|
|
|
|
|
|
|
// Get a noise power estimate by averaging power[] values on a subset of the data.
|
|
|
|
// ToDo - Is the averaging of log values here adequate? Really should be
|
|
|
|
// power averaging, but that is time consuming.
|
|
|
|
// This is usd only when all signals are low in amplitude.
|
|
|
|
// Noise estimate takes about 145 uSec.
|
|
|
|
int npCount = 0;
|
|
|
|
float32_t np = 0.0f;
|
|
|
|
for(int jj=0; jj<368; jj += 4) // 0 to 367, inclusive, by 4's, 92 of them
|
|
|
|
{
|
|
|
|
for(int kk=48; kk<280; kk+=2)
|
|
|
|
{
|
|
|
|
np += (float32_t)power[jj*368+kk];
|
|
|
|
npCount++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
FT8noisePowerEstimateL = np/(float32_t)npCount;
|
|
|
|
FT8noisePwrDBIntL = (int16_t)(0.5f*FT8noisePowerEstimateL);
|
|
|
|
|
|
|
|
#if DEBUG_N
|
|
|
|
Serial.println("Data for low SNR noise estimate:");
|
|
|
|
Serial.print(" Full Ave Noise = "); Serial.println(FT8noisePowerEstimateL);
|
|
|
|
Serial.print(" Full Ave dB Noise Int = "); Serial.println(FT8noisePwrDBIntL);
|
|
|
|
Serial.print(" Noise Sample Count = "); Serial.println(npCount);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Here we allow time offsets that exceed signal boundaries, as long as we still have all data bits.
|
|
|
|
// I.e. we can afford to skip the first 7 or the last 7 Costas symbols, as long as we track how many
|
|
|
|
// sync symbols we included in the score, so the score is averaged.
|
|
|
|
// This sync search takes about 27 milliseconds
|
|
|
|
for (int alt = 0; alt < 4; ++alt)
|
|
|
|
{
|
|
|
|
// 92-79+7=20
|
|
|
|
for (int time_offset = -7; time_offset < num_blocks - FT8_NN + 7; ++time_offset) // FT8_NN=79
|
|
|
|
{
|
|
|
|
// 48 368-8=360
|
|
|
|
for (int freq_offset = LOW_FREQ_INDEX; freq_offset < num_bins - 8; ++freq_offset)
|
|
|
|
{
|
|
|
|
// There are about 33,000 combinations of time and frquency offsets
|
|
|
|
// because we don't know the frequency and there may be time errors.
|
|
|
|
// For each of these we find average sync score over sync
|
|
|
|
// symbols (m+k = 0-7, 36-43, 72-79)
|
|
|
|
int score = 0; // 32-bit int
|
|
|
|
int num_symbols = 0;
|
|
|
|
for (int m = 0; m <= 72; m += 36) // Over all 3 sync time groups of 7
|
|
|
|
{
|
|
|
|
for (int k = 0; k < 7; ++k) // Over all 7 symbols (in time)
|
|
|
|
{
|
|
|
|
// Check for time boundaries
|
|
|
|
if (time_offset + k + m < 0) continue;
|
|
|
|
if (time_offset + k + m >= num_blocks) break;
|
|
|
|
|
|
|
|
int offset = ((time_offset + k + m) * 4 + alt) * num_bins + freq_offset;
|
|
|
|
p8 = power + offset;
|
|
|
|
|
|
|
|
// const uint8_t kCostas_map[7] = { 3,1,4,0,6,5,2 }; i.e., sync_map[]
|
|
|
|
score += 8 * p8[sync_map[k]] -
|
|
|
|
p8[0] - p8[1] - p8[2] - p8[3] -
|
|
|
|
p8[4] - p8[5] - p8[6] - p8[7];
|
|
|
|
/*
|
|
|
|
// Check only the neighbors of the expected symbol frequency- and time-wise
|
|
|
|
int sm = sync_map[k]; // Index of the expected bin
|
|
|
|
if (sm > 0) {
|
|
|
|
// look at one frequency bin lower
|
|
|
|
score += p8[sm] - p8[sm - 1];
|
|
|
|
}
|
|
|
|
if (sm < 7) {
|
|
|
|
// look at one frequency bin higher
|
|
|
|
score += p8[sm] - p8[sm + 1];
|
|
|
|
}
|
|
|
|
if (k > 0) {
|
|
|
|
// look one symbol back in time
|
|
|
|
score += p8[sm] - p8[sm - 4 * num_bins];
|
|
|
|
}
|
|
|
|
if (k < 6) {
|
|
|
|
// look one symbol forward in time
|
|
|
|
score += p8[sm] - p8[sm + 4 * num_bins];
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
++num_symbols;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
score /= num_symbols;
|
|
|
|
// Todo - can this benefit from doing score in float?
|
|
|
|
//Serial.print("num_symbols "); Serial.println(num_symbols);
|
|
|
|
//Serial.print("score "); Serial.println(score);
|
|
|
|
|
|
|
|
// if(score > max_score) max_score = score;
|
|
|
|
if (score < min_score)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
// If the heap is full AND the current candidate is better than
|
|
|
|
// the worst in the heap, we remove the worst and make space
|
|
|
|
if (heap_size == num_candidates && score > heap[0].score)
|
|
|
|
{
|
|
|
|
heap[0] = heap[heap_size - 1];
|
|
|
|
--heap_size;
|
|
|
|
heapify_down(heap, heap_size);
|
|
|
|
}
|
|
|
|
// If there's free space in the heap, we add the current candidate
|
|
|
|
if (heap_size < num_candidates)
|
|
|
|
{
|
|
|
|
heap[heap_size].score = score;
|
|
|
|
heap[heap_size].time_offset = time_offset;
|
|
|
|
heap[heap_size].freq_offset = freq_offset;
|
|
|
|
heap[heap_size].alt = alt; // Added for Teensy RSL
|
|
|
|
heap[heap_size].time_sub = alt / 2;
|
|
|
|
heap[heap_size].freq_sub = alt % 2;
|
|
|
|
heap[heap_size].syncPower = 0.0f; // Added for Teensy RSL
|
|
|
|
++heap_size;
|
|
|
|
heapify_up(heap, heap_size);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} //end of alt loop
|
|
|
|
|
|
|
|
// For the frequencies and times that match the candidates, go back to the power
|
|
|
|
// data and compute the power average over the 3 * 7 sync symbols
|
|
|
|
// For 20 candidates this takes about 340 uSec.
|
|
|
|
for(int hh=0; hh<heap_size; hh++)
|
|
|
|
{
|
|
|
|
// Compute syncPower over sync symbols (m+k = 0-7, 36-43, 72-79)
|
|
|
|
float32_t sPower = 0.0f;
|
|
|
|
int num_symbols = 0;
|
|
|
|
for (int m = 0; m <= 72; m += 36) // Over all 3 sync time groups of 7
|
|
|
|
{
|
|
|
|
for (int k = 0; k < 7; ++k) // Over all 7 symbols (in time)
|
|
|
|
{
|
|
|
|
// Check for time boundaries
|
|
|
|
if (heap[hh].time_offset + k + m < 0) continue;
|
|
|
|
if (heap[hh].time_offset + k + m >= num_blocks) break;
|
|
|
|
int offset = (heap[hh].time_offset + k + m) * 4 + heap[hh].alt*num_bins
|
|
|
|
+ heap[hh].freq_offset;
|
|
|
|
p8 = power + offset;
|
|
|
|
sPower += powf(10.0f, 0.05*(float32_t)(p8[sync_map[k]]-136));
|
|
|
|
++num_symbols;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
heap[hh].syncPower = 10.0f*log10f(sPower/(float32_t)num_symbols); // This is a measure of signal power level in dB
|
|
|
|
}
|
|
|
|
return heap_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compute log likelihood log(p(1) / p(0)) of 174 message bits
|
|
|
|
// for later use in soft-decision LDPC decoding
|
|
|
|
// Takes about 28 uSec for each Candidate
|
|
|
|
void extract_likelihood(const uint8_t *power, int num_bins,
|
|
|
|
Candidate cand, const uint8_t *code_map,
|
|
|
|
float *log174) {
|
|
|
|
int ft8_offset = (cand.time_offset * 4 + cand.time_sub * 2 + cand.freq_sub)
|
|
|
|
*num_bins + cand.freq_offset;
|
|
|
|
// Go over FSK tones and skip Costas sync symbols
|
|
|
|
const int n_syms = 1;
|
|
|
|
// const int n_bits = 3 * n_syms;
|
|
|
|
// const int n_tones = (1 << n_bits);
|
|
|
|
for (int k = 0; k < FT8_ND; k += n_syms)
|
|
|
|
{
|
|
|
|
int sym_idx = (k < FT8_ND / 2) ? (k + 7) : (k + 14);
|
|
|
|
int bit_idx = 3 * k;
|
|
|
|
// Pointer to 8 bins of the current symbol
|
|
|
|
const uint8_t *ps = power + (ft8_offset + sym_idx * 4 * num_bins);
|
|
|
|
decode_symbol(ps, code_map, bit_idx, log174);
|
|
|
|
}
|
|
|
|
// Compute the variance of log174
|
|
|
|
float sum = 0;
|
|
|
|
float sum2 = 0;
|
|
|
|
float inv_n = 1.0f / FT8_N;
|
|
|
|
for (int i = 0; i < FT8_N; ++i)
|
|
|
|
{
|
|
|
|
sum += log174[i];
|
|
|
|
sum2 += log174[i] * log174[i];
|
|
|
|
}
|
|
|
|
float variance = (sum2 - sum * sum * inv_n) * inv_n;
|
|
|
|
// Normalize log174 such that sigma = 2.83 (Why? It's in WSJT-X, ft8b.f90)
|
|
|
|
// Seems to be 2.83 = sqrt(8). Experimentally sqrt(16) works better.
|
|
|
|
float norm_factor = sqrtf(16.0f / variance);
|
|
|
|
for (int i = 0; i < FT8_N; ++i)
|
|
|
|
{
|
|
|
|
log174[i] *= norm_factor;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static float max2(float a, float b) {
|
|
|
|
return (a >= b) ? a : b;
|
|
|
|
}
|
|
|
|
|
|
|
|
static float max4(float a, float b, float c, float d) {
|
|
|
|
return max2(max2(a, b), max2(c, d));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void heapify_down(Candidate *heap, int heap_size) {
|
|
|
|
// heapify from the root down
|
|
|
|
int current = 0;
|
|
|
|
while (true)
|
|
|
|
{
|
|
|
|
int largest = current;
|
|
|
|
int left = 2 * current + 1;
|
|
|
|
int right = left + 1;
|
|
|
|
if (left < heap_size && heap[left].score < heap[largest].score)
|
|
|
|
largest = left;
|
|
|
|
if (right < heap_size && heap[right].score < heap[largest].score)
|
|
|
|
largest = right;
|
|
|
|
if (largest == current)
|
|
|
|
break;
|
|
|
|
Candidate tmp = heap[largest];
|
|
|
|
heap[largest] = heap[current];
|
|
|
|
heap[current] = tmp;
|
|
|
|
current = largest;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void heapify_up(Candidate *heap, int heap_size) {
|
|
|
|
// heapify from the last node up
|
|
|
|
int current = heap_size - 1;
|
|
|
|
while (current > 0)
|
|
|
|
{
|
|
|
|
int parent = (current - 1)/ 2;
|
|
|
|
if (heap[current].score >= heap[parent].score)
|
|
|
|
break;
|
|
|
|
Candidate tmp = heap[parent];
|
|
|
|
heap[parent] = heap[current];
|
|
|
|
heap[current] = tmp;
|
|
|
|
current = parent;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Compute unnormalized log likelihood log(p(1)/p(0)) of
|
|
|
|
// 3 message bits (1 FSK symbol)
|
|
|
|
static void decode_symbol(const uint8_t *power, const uint8_t *code_map,
|
|
|
|
int bit_idx, float *log174) {
|
|
|
|
// Cleaned up code for the simple case of n_syms==1
|
|
|
|
float s2[8];
|
|
|
|
for (int j = 0; j < 8; ++j)
|
|
|
|
{
|
|
|
|
s2[j] = (float)power[code_map[j]];
|
|
|
|
//s2[j] = (float)work_fft_power[offset+code_map[j]];
|
|
|
|
}
|
|
|
|
log174[bit_idx + 0] = max4(s2[4], s2[5], s2[6], s2[7]) - max4(s2[0], s2[1], s2[2], s2[3]);
|
|
|
|
log174[bit_idx + 1] = max4(s2[2], s2[3], s2[6], s2[7]) - max4(s2[0], s2[1], s2[4], s2[5]);
|
|
|
|
log174[bit_idx + 2] = max4(s2[1], s2[3], s2[5], s2[7]) - max4(s2[0], s2[2], s2[4], s2[6]);
|
|
|
|
}
|
|
|
|
|