You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
MiniDexed/src/test/beta_lowlevel.cpp

440 lines
14 KiB

#include <gtest/gtest.h>
#include <iostream>
#include <iomanip>
#include "test_fx_helper.h"
#include "../fx_engine.hpp"
#define PRINT_EXEC(ctx, x) \
std::cout.fill(' '); \
std::cout.width(80); \
std::cout << std::left; \
std::cout.precision(6); \
std::cout << std::fixed; \
std::cout << #x; \
x \
{ \
float32_t v = 0.0f; \
ctx.write(v); \
std::cout << " // accumulator_: " << showpos << v; \
} \
std::cout << std::endl
#define TAIL , -1
typedef FxEngine<16384, Format::FORMAT_FLOAT32, true> Engine;
void processDebugReverberatorSample(
Engine& engine_, size_t index,
float32_t& lp_decay_1_, float32_t& lp_decay_2_,
float32_t inL, float32_t inR,
float32_t& outL, float32_t& outR)
{
// This is the Griesinger topology described in the Dattorro paper
// (4 AP diffusers on the input, then a loop of 2x 2AP+1Delay).
// Modulation is applied in the loop of the first diffuser AP for additional
// smearing; and to the two long delays for a slow shimmer/chorus effect.
typedef Engine::Reserve< 113,
Engine::Reserve< 162,
Engine::Reserve< 241,
Engine::Reserve< 399,
Engine::Reserve<1653,
Engine::Reserve<2038,
Engine::Reserve<3411,
Engine::Reserve<1913,
Engine::Reserve<1663,
Engine::Reserve<4782> > > > > > > > > > Memory;
Engine::DelayLine<Memory, 0> ap1;
Engine::DelayLine<Memory, 1> ap2;
Engine::DelayLine<Memory, 2> ap3;
Engine::DelayLine<Memory, 3> ap4;
Engine::DelayLine<Memory, 4> dap1a;
Engine::DelayLine<Memory, 5> dap1b;
Engine::DelayLine<Memory, 6> del1;
Engine::DelayLine<Memory, 7> dap2a;
Engine::DelayLine<Memory, 8> dap2b;
Engine::DelayLine<Memory, 9> del2;
Engine::Context c;
const float32_t kap = 0.8f;
const float32_t klp = 0.7f;
const float32_t krt = 0.75f;
const float32_t gain = 0.55f;
float32_t lp_1 = lp_decay_1_;
float32_t lp_2 = lp_decay_2_;
float32_t wet = 0.0f;
float32_t apout = 0.0f;
engine_.start(&c);
// Smear AP1 inside the loop.
PRINT_EXEC(c, c.interpolate(ap1, 10.0f, Engine::LFOIndex::LFO_1, 60.0f, 1.0f););
PRINT_EXEC(c, c.write(ap1, 100, 0.0f););
PRINT_EXEC(c, c.read(inL + inR, gain););
// Diffuse through 4 allpasses.
PRINT_EXEC(c, c.read(ap1 TAIL, kap););
PRINT_EXEC(c, c.writeAllPass(ap1, -kap););
PRINT_EXEC(c, c.read(ap2 TAIL, kap););
PRINT_EXEC(c, c.writeAllPass(ap2, -kap););
PRINT_EXEC(c, c.read(ap3 TAIL, kap););
PRINT_EXEC(c, c.writeAllPass(ap3, -kap););
PRINT_EXEC(c, c.read(ap4 TAIL, kap););
PRINT_EXEC(c, c.writeAllPass(ap4, -kap););
PRINT_EXEC(c, c.write(apout););
// Main reverb loop.
PRINT_EXEC(c, c.load(apout););
PRINT_EXEC(c, c.interpolate(del2, 4680.0f, Engine::LFOIndex::LFO_2, 100.0f, krt););
PRINT_EXEC(c, c.lp(lp_1, klp););
PRINT_EXEC(c, c.read(dap1a TAIL, -kap););
PRINT_EXEC(c, c.writeAllPass(dap1a, kap););
PRINT_EXEC(c, c.read(dap1b TAIL, kap););
PRINT_EXEC(c, c.writeAllPass(dap1b, -kap););
PRINT_EXEC(c, c.write(del1, 1.5f););
PRINT_EXEC(c, c.write(wet, 0.0f););
outL = wet;
PRINT_EXEC(c, c.load(apout););
// PRINT_EXEC(c, c.interpolate(del1, 4450.0f, Engine::LFOIndex::LFO_1, 50.0f, krt););
PRINT_EXEC(c, c.read(del1 TAIL, krt););
PRINT_EXEC(c, c.lp(lp_2, klp););
PRINT_EXEC(c, c.read(dap2a TAIL, kap););
PRINT_EXEC(c, c.writeAllPass(dap2a, -kap););
PRINT_EXEC(c, c.read(dap2b TAIL, -kap););
PRINT_EXEC(c, c.writeAllPass(dap2b, kap););
PRINT_EXEC(c, c.write(del2, 1.5f););
PRINT_EXEC(c, c.write(wet, 0.0f););
outR = wet;
lp_decay_1_ = lp_1;
lp_decay_2_ = lp_2;
std::cout << "Index # " << index << " - ( " << inL << ", " << inR << " ) ==> ( " << outL << ", " << outR << " )" << std::endl;
std::cout << std::endl << "***********************************************************************************************************" << std::endl << std::endl;
}
TEST(LowLevel, TestDiracReverberatorAlgo)
{
const testing::TestInfo* test_info = testing::UnitTest::GetInstance()->current_test_info();
std::string full_test_name = test_info->test_case_name();
full_test_name += ".";
full_test_name += test_info->name();
Engine engine_(SAMPLING_FREQUENCY);
engine_.setLFOFrequency(Engine::LFOIndex::LFO_1, 0.5f);
engine_.setLFOFrequency(Engine::LFOIndex::LFO_2, 0.3f);
engine_.reset();
float32_t lp1 = 0.0f;
float32_t lp2 = 0.0f;
const size_t size = static_cast<float32_t>(SAMPLING_FREQUENCY) * 4;
float32_t* inSamples = new float32_t[size];
memset(inSamples, 0, size * sizeof(float32_t));
inSamples[0] = 1.0f;
float32_t* outSamplesL = new float32_t[size];
float32_t* outSamplesR = new float32_t[size];
memset(outSamplesL, 0, size * sizeof(float32_t));
memset(outSamplesR, 0, size * sizeof(float32_t));
for(size_t i = 0; i < size; ++i)
{
processDebugReverberatorSample(engine_, i, lp1, lp2, inSamples[i], inSamples[i], outSamplesL[i], outSamplesR[i]);
}
saveWaveFile(getResultFile(full_test_name + ".wav", true), outSamplesL, outSamplesR, size, SAMPLING_FREQUENCY, 16);
delete[] outSamplesL;
delete[] outSamplesR;
delete[] inSamples;
}
void processReverberatorSample(
Engine& engine_L_, Engine& engine_R_, size_t index,
float32_t& lp_decay_1_, float32_t& lp_decay_2_,
float32_t inL, float32_t inR,
float32_t& outL, float32_t& outR)
{
// This is the Griesinger topology described in the Dattorro paper
// (4 AP diffusers on the input, then a loop of 2x 2AP+1Delay).
// Modulation is applied in the loop of the first diffuser AP for additional
// smearing; and to the two long delays for a slow shimmer/chorus effect.
typedef Engine::Reserve< 113,
Engine::Reserve< 162,
Engine::Reserve< 241,
Engine::Reserve< 399,
Engine::Reserve<1653,
Engine::Reserve<2038,
Engine::Reserve<3411,
Engine::Reserve<1913,
Engine::Reserve<1663,
Engine::Reserve<4782> > > > > > > > > > Memory;
Engine::DelayLine<Memory, 0> ap1;
Engine::DelayLine<Memory, 1> ap2;
Engine::DelayLine<Memory, 2> ap3;
Engine::DelayLine<Memory, 3> ap4;
Engine::DelayLine<Memory, 4> dap1a;
Engine::DelayLine<Memory, 5> dap1b;
Engine::DelayLine<Memory, 6> del1;
Engine::DelayLine<Memory, 7> dap2a;
Engine::DelayLine<Memory, 8> dap2b;
Engine::DelayLine<Memory, 9> del2;
Engine::Context cL;
Engine::Context cR;
const float32_t kap = 0.8f;
const float32_t klp = 0.7f;
const float32_t krt = 0.75f;
const float32_t gain = 0.55f;
float32_t lp_1 = lp_decay_1_;
float32_t lp_2 = lp_decay_2_;
float32_t wet = 0.0f;
float32_t apout = 0.0f;
engine_L_.start(&cL);
engine_R_.start(&cR);
// Smear AP1 inside the loop.
cL.interpolate(ap1, 10.0f, Engine::LFOIndex::LFO_1, 60.0f, 1.0f);
cL.write(ap1, 100, 0.0f);
cL.read(inL, gain);
// Diffuse through 4 allpasses.
cL.read(ap1 TAIL, kap);
cL.writeAllPass(ap1, -kap);
cL.read(ap2 TAIL, kap);
cL.writeAllPass(ap2, -kap);
cL.read(ap3 TAIL, kap);
cL.writeAllPass(ap3, -kap);
cL.read(ap4 TAIL, kap);
cL.writeAllPass(ap4, -kap);
cL.write(apout);
// Main reverb loop.
cL.load(apout);
cL.interpolate(del2, 4680.0f, Engine::LFOIndex::LFO_2, 100.0f, krt);
cL.lp(lp_1, klp);
cL.read(dap1a TAIL, -kap);
cL.writeAllPass(dap1a, kap);
cL.read(dap1b TAIL, kap);
cL.writeAllPass(dap1b, -kap);
cL.write(del1, 1.5f);
cL.write(wet, 0.0f);
outL = wet;
// Smear AP1 inside the loop.
cR.interpolate(ap1, 10.0f, Engine::LFOIndex::LFO_1, 60.0f, 1.0f);
cR.write(ap1, 100, 0.0f);
cR.read(inL + inR, gain);
// Diffuse through 4 allpasses.
cR.read(ap1 TAIL, kap);
cR.writeAllPass(ap1, -kap);
cR.read(ap2 TAIL, kap);
cR.writeAllPass(ap2, -kap);
cR.read(ap3 TAIL, kap);
cR.writeAllPass(ap3, -kap);
cR.read(ap4 TAIL, kap);
cR.writeAllPass(ap4, -kap);
cR.write(apout);
// Main reverb loop.
cR.load(apout);
// cR.interpolate(del1, 4450.0f, Engine::LFOIndex::LFO_1, 50.0f, krt);
cR.read(del1 TAIL, krt);
cR.lp(lp_2, klp);
cR.read(dap2a TAIL, kap);
cR.writeAllPass(dap2a, -kap);
cR.read(dap2b TAIL, -kap);
cR.writeAllPass(dap2b, kap);
cR.write(del2, 1.5f);
cR.write(wet, 0.0f);
outR = wet;
lp_decay_1_ = lp_1;
lp_decay_2_ = lp_2;
}
TEST(LowLevel, TestStereoReverberatorAlgo)
{
const testing::TestInfo* test_info = testing::UnitTest::GetInstance()->current_test_info();
std::string full_test_name = test_info->test_case_name();
full_test_name += ".";
full_test_name += test_info->name();
Engine engine_L_(SAMPLING_FREQUENCY);
Engine engine_R_(SAMPLING_FREQUENCY);
engine_L_.setLFOFrequency(Engine::LFOIndex::LFO_1, 0.5f);
engine_L_.setLFOFrequency(Engine::LFOIndex::LFO_2, 0.3f);
engine_L_.reset();
engine_R_.setLFOFrequency(Engine::LFOIndex::LFO_1, 0.5f);
engine_R_.setLFOFrequency(Engine::LFOIndex::LFO_2, 0.3f);
engine_R_.reset();
float32_t lp1 = 0.0f;
float32_t lp2 = 0.0f;
size_t size = 0;
float32_t** inSamples = readWaveFile(AUDIO_SOURCE_FILE, size);
float32_t* outSamplesL = new float32_t[size];
float32_t* outSamplesR = new float32_t[size];
memset(outSamplesL, 0, size * sizeof(float32_t));
memset(outSamplesR, 0, size * sizeof(float32_t));
for(size_t i = 0; i < size; ++i)
{
processReverberatorSample(engine_L_, engine_R_, i, lp1, lp2, inSamples[0][i], inSamples[1][i], outSamplesL[i], outSamplesR[i]);
}
saveWaveFile(getResultFile(full_test_name + ".wav", true), outSamplesL, outSamplesR, size, SAMPLING_FREQUENCY, 16);
delete[] outSamplesL;
delete[] outSamplesR;
delete[] inSamples[0];
delete[] inSamples[1];
delete[] inSamples;
}
void processReverberatorSample(
Engine& engine_, size_t index,
float32_t& lp_decay_1_, float32_t& lp_decay_2_,
float32_t inL, float32_t inR,
float32_t& outL, float32_t& outR)
{
// This is the Griesinger topology described in the Dattorro paper
// (4 AP diffusers on the input, then a loop of 2x 2AP+1Delay).
// Modulation is applied in the loop of the first diffuser AP for additional
// smearing; and to the two long delays for a slow shimmer/chorus effect.
typedef Engine::Reserve< 113,
Engine::Reserve< 162,
Engine::Reserve< 241,
Engine::Reserve< 399,
Engine::Reserve<1653,
Engine::Reserve<2038,
Engine::Reserve<3411,
Engine::Reserve<1913,
Engine::Reserve<1663,
Engine::Reserve<4782> > > > > > > > > > Memory;
Engine::DelayLine<Memory, 0> ap1;
Engine::DelayLine<Memory, 1> ap2;
Engine::DelayLine<Memory, 2> ap3;
Engine::DelayLine<Memory, 3> ap4;
Engine::DelayLine<Memory, 4> dap1a;
Engine::DelayLine<Memory, 5> dap1b;
Engine::DelayLine<Memory, 6> del1;
Engine::DelayLine<Memory, 7> dap2a;
Engine::DelayLine<Memory, 8> dap2b;
Engine::DelayLine<Memory, 9> del2;
Engine::Context c;
const float32_t kap = 0.8f;
const float32_t klp = 0.7f;
const float32_t krt = 0.75f;
const float32_t gain = 0.55f;
float32_t lp_1 = lp_decay_1_;
float32_t lp_2 = lp_decay_2_;
float32_t wet = 0.0f;
float32_t apout = 0.0f;
engine_.start(&c);
// Smear AP1 inside the loop.
c.interpolate(ap1, 10.0f, Engine::LFOIndex::LFO_1, 60.0f, 1.0f);
c.writeAndLoad(ap1, 100, 0.0f);
c.read(inL + inR, gain);
// Diffuse through 4 allpasses.
c.read(ap1 TAIL, kap);
c.writeAllPass(ap1, -kap);
c.read(ap2 TAIL, kap);
c.writeAllPass(ap2, -kap);
c.read(ap3 TAIL, kap);
c.writeAllPass(ap3, -kap);
c.read(ap4 TAIL, kap);
c.writeAllPass(ap4, -kap);
c.write(apout);
// Main reverb loop.
c.load(apout);
c.interpolate(del2, 4680.0f, Engine::LFOIndex::LFO_2, 100.0f, krt);
c.lp(lp_1, klp);
c.read(dap1a TAIL, -kap);
c.writeAllPass(dap1a, kap);
c.read(dap1b TAIL, kap);
c.writeAllPass(dap1b, -kap);
c.write(del1, 2.0f);
c.writeAndLoad(wet, 0.0f);
outL = wet;
c.load(apout);
c.read(del1 TAIL, krt);
c.lp(lp_2, klp);
c.read(dap2a TAIL, kap);
c.writeAllPass(dap2a, -kap);
c.read(dap2b TAIL, -kap);
c.writeAllPass(dap2b, kap);
c.write(del2, 2.0f);
c.writeAndLoad(wet, 0.0f);
outR = wet;
lp_decay_1_ = lp_1;
lp_decay_2_ = lp_2;
}
TEST(LowLevel, TestMonoReverberatorAlgo)
{
const testing::TestInfo* test_info = testing::UnitTest::GetInstance()->current_test_info();
std::string full_test_name = test_info->test_case_name();
full_test_name += ".";
full_test_name += test_info->name();
Engine engine_(SAMPLING_FREQUENCY);
engine_.setLFOFrequency(Engine::LFOIndex::LFO_1, 0.5f);
engine_.setLFOFrequency(Engine::LFOIndex::LFO_2, 0.3f);
engine_.reset();
float32_t lp1 = 0.0f;
float32_t lp2 = 0.0f;
size_t size = 0;
float32_t** inSamples = readWaveFile(AUDIO_SOURCE_FILE, size);
float32_t* outSamplesL = new float32_t[size];
float32_t* outSamplesR = new float32_t[size];
memset(outSamplesL, 0, size * sizeof(float32_t));
memset(outSamplesR, 0, size * sizeof(float32_t));
for(size_t i = 0; i < size; ++i)
{
processReverberatorSample(engine_, i, lp1, lp2, inSamples[0][i], inSamples[1][i], outSamplesL[i], outSamplesR[i]);
}
saveWaveFile(getResultFile(full_test_name + ".wav", true), outSamplesL, outSamplesR, size, SAMPLING_FREQUENCY, 16);
delete[] outSamplesL;
delete[] outSamplesR;
delete[] inSamples[0];
delete[] inSamples[1];
delete[] inSamples;
}